
Audio Descriptive Synthesis

“AUDESSY”

Eddy Savvas Kazazis

Institute of Sonology

Royal Conservatory in The Hague

Master’s Thesis

2014 May



c© 2014 Savvas Kazazis

ii



Abstract

This thesis examines the viability of audio descriptors within a synthe-

sis context. It provides insight into acoustical modeling based on verbal

descriptions by quantifying the relationships between verbal attributes of

timbre and a set of audio descriptors. Various predictive models of verbal

attribute magnitude estimation (VAME) are also tested. The results show

that is possible to create, classify and order sounds according to a verbal

description. Finally, audio descriptive synthesis (AUDESSY) is introduced.

This technique offers the possibility to synthesize and modulate sounds ac-

cording to sonic morphologies, which are revealed by audio descriptors.

Keywords: timbre, timbre space, audio descriptors, sonic morphology, per-

ception, optimization, synthesis, analysis, dimensional reduction, partial

least squares regression.
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To Paul Berg.



“We long ago quit talking about “happy melodies” and “pungent

harmonies” in favor of contextual musical analysis of developing

musical structures of, primarily, pitch and rhythm; and I would

hope that we could soon find whatever further excuse we still need

to quit talking about “mellow timbres” and “edgy timbres,” and

“timbres” altogether, in favor of contextual musical analysis of

developing structures of vibrato, tremolo, spectral transformation,

and all those various dimensions of sound which need no longer

languish as inmates of some metaphor.”

J. K. Randall: Three lectures to scientists.

(Randall, 1967)
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Chapter 1

Introduction

The main motivation for this work arises from the author’s general interest in timbre,

and the notion that sound, is a structured entity that can be apprehended through a

compact and qualitative representation.

1.1 Timbre: A Word versus a Phenomenon

Paul Berg gives a rather poetic definition of timbre:

“Timbre is Magic.” (Berg, 2012)

We can either add more mystery into the subject by quoting Denis Smalley’s conclusion,

drawn from his contradictory article Defining Timbre - Refining Timbre:

“Timbre is dead. Long live timbre.” (Smalley, 1994)

Or, we can demystify what timbre is about by paying too much attention to the negative

definition provided by the American Standards Association (ASA, 1960). Al Bregman

in Auditory Scene Analysis nicely puts that definition in question:

“The problem with timbre is that it is the name for an ill-defined waste-

basket category. Here is the much-quoted definition of timbre given by the

American Standards Association: ‘that attribute of auditory sensation in

terms of which a listener can judge that two sounds similarly presented and

having the same loudness and pitch are dissimilar.’ This is, of course, no

definition at all.” (Bregman, 2001)
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1. INTRODUCTION

Indeed, the word timbre has a catch. Robert Erickson in Sound Structure in Music

cites the translator of Hermann Helmholtz’s On the Sensations of Tone, Alexander

Ellis:

“ . . . Timbre, properly a kettledrum, then a helmet, then the coat of arms

surmounted with a helmet, then the official stamp bearing that coat of arms

(now used in France for a postage label), and then the mark which declared

a thing to be what it pretends to be . . . ” (Erickson, 1975)

Stephen McAdams comments further the vagueness of the word and points out some

isles that timbre leaves its marks on:

“Timbre is a misleadingly simple and exceedingly vague word encompassing

a very complex set of auditory attributes, as well as a plethora of intricate

psychological and musical issues.” (McAdams, 2013)

As a conclusion, we might say that timbre is a multidimensional phenomenon bounded

by context, listening strategies and listening abilities.

1.2 A Qualitative Representation of Sound

In the present thesis we examine the relationships between verbal attributes of timbre

and their acoustic correlates, and we attempt to determine sonic morphologies as these

arise by a purely descriptive model. If the analysis model is too general, it will be

incapable to reveal any morphology at all. On the other hand, if it is too specific,

the essence of what it is assumed to describe might be lost due to highly redundant

information.

A nice compromise between these two extremes could be made if we build our

analysis model by extracting some carefully chosen audio features, which we shall call

“audio descriptors”1. Once the morphologies are determined, we attempt to synthesize

sounds that encapsulate the desired characteristics while at the same time leaving room

for further artistic exploration. This can be seen as an analysis by synthesis approach

(Risset, 1991) which allows us to: synthesize sounds starting from a description of

1Essentially, “audio descriptors” are acoustic parameters that correlate with a perceptual dimension

though in the present thesis they will refer to audio features.
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1.3 Framework

their physical structure; model and synthesize sounds, based on perceptual dimensions;

morph between sounds; create generic sound templates.

“Audio descriptors”, as the name suggests, don’t define, rather describe sound

and hopefully this is a well-known concept to composers. A score is condemned to

describe what it refers to since the elements that define music emerge from the actual

performance.

1.3 Framework

Initially, we create sound profiles by performing an audio descriptive analysis on a

gamut of sounds. These “templates” will be used to demonstrate some concepts

throughout this thesis and will serve as general guidelines for the synthesis process.

1.3.1 Analysis

The analysis process is quite straightforward and most of the times will be performed

so that its results can be directly used as synthesis-parameters. First of all, we need

to choose an input representation of the sound being analyzed, according to the audio

features that are to be extracted. We can choose one or more from the following

representations: the temporal energy envelope; the short-time Fourier transform; a

sinusoidal model ; and a more “strict” harmonic representation.

Afterwards, we specify the set of audio descriptors that we intend to use by consid-

ering the appropriateness of each descriptor with respect to the synthesis scheme2, and

by taking into account the fact that audio descriptors are often (and sometimes highly)

inter-correlated. Finally, we apply various operators to the input-representation of the

signal to derive the audio descriptors.

1.3.2 Synthesis

The synthesis scheme requires a source sound that will be represented by a sinusoidal

model and eventually, all operations will act upon this representation. The source can

be any waveform (sampled or directly specified in the sinusoidal model), which will be

transformed according to a target-morphology as dictated by the audio descriptors.

2For example, it would be odd to use the zero-crossing rate as a parameter in a frequency-domain

synthesis algorithm.
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1. INTRODUCTION

In the next stage, we extract the audio descriptors and set their target values. These

values can either be derived from the previous analysis stage, or they can be specified

according to a preconceived sonic morphology. We force the source to adopt the target

values by utilizing an optimization algorithm, using the audio descriptors as constraints,

and as an objective function the sum of partials’ amplitudes, which are obtained by

the sinusoidal representation. If there is a feasible solution, the optimization will lead

us to obtain the best sound, in a sense that it will be as close as possible to the source

sound while at the same time will ensure that all of our constraints are satisfied (i.e.

the audio descriptors have attained their target values). Finally, we apply the results

obtained by the optimization process to the sinusoidal model and convert it back to

sound by using additive synthesis.

1.4 Structure of the Document

Chapter 2 introduces the audio descriptors that will be used in the present thesis and

gives a brief presentation of the Timbre Toolbox (Peeters, Giordano, Susini, Misdariis

& McAdams, 2011), which is an analysis toolbox built in MATLAB.

Chapter 3 focuses on the perceptual saliency of spectral, temporal and spectrotemporal

attributes of timbre, and the construction of timbre spaces.

Chapter 4 presents the conclusions from previous studies on timbre semantics, and

creates a link between verbal attributes of timbre and audio descriptors, aiming to

provide insight into acoustical modeling based on perceptual dimensions.

Chapter 5 explains in more depth the synthesis process and presents some plausible

uses of audio descriptive synthesis.

4



Chapter 2

Audio Descriptive Analysis

Audio descriptors refer to the acoustical parameters of an audio signal, which can

serve as potential physical correlates of perceptual dimensions. The formalization of

these parameters over the past years has led to the development of a large set of

audio descriptors, which are used in standards such as the MPEG7 (Peeters, McAdams

& Herrera, 2000) and more recently in MATLAB toolboxes such as the MIRtoolbox

(Lartillot & Toiviainen, 2007) and the Timbre Toolbox (Peeters et al., 2011), which

will be discussed shortly.

Extracting such parameters from audio signals offers a systematic approach for

deriving sonic morphologies and examining their reflections to human perception. How

we gain control over these parameters will be discussed in detail in chapter 5.

In the following paragraphs we start with a brief presentation of the Timbre Toolbox.

Then, we examine in relation to our methodology, the usability of input-representations

from which the audio descriptors are derived. Finally, we present a formalization of

audio descriptors and carry out a principled selection based on their suitability within

a synthesis context.

2.1 The Timbre Toolbox

Timbre Toolbox contains a set of 32 audio descriptors that are extracted from the

following input-signal representations: temporal energy envelope, short-time Fourier

transform, harmonic sinusoidal components and a model of peripheral auditory pro-

cessing –the Equivalent Rectangular Bandwidth (ERB) model.

5



2. AUDIO DESCRIPTIVE ANALYSIS

These descriptors (summarized in Figure 2.1) capture temporal, energetic, spectral

and spectrotemporal properties of the sound being analyzed. Temporal descriptors

refer to properties such as log-attack time, decay, release and the amplitude and fre-

quency modulation. Energetic descriptors include the harmonic-to-noise energy ratio

of the signal. The spectral shape can be derived from descriptors such as the spectral

centroid and higher order statistics, spectral decrease and spectral crest. Spectral vari-

ation (often called spectral flux) is the only descriptor referring to the spectrotemporal

properties of the sound.

Timbre Toolbox is designed to extract audio descriptors from a single acoustic event

rather from a series of events. Therefore, descriptors are divided in two categories:

global descriptors, which have a single value (eg. the attack time) and time-varying

descriptors, which are extracted from a frame-by-frame analysis and therefore have

multiple values along the duration of the sound event. In order to have an overview of

these time-varying values, descriptive statistics are used. These include the minimum

or maximum values, the standard deviation, the mean and the more robust measures

of central tendency and variability, expressed by the median value and interquartile

ranges respectively.

2.2 Input Representations

The audio descriptive analysis is performed using the input representations presented

in the next paragraphs. Audio descriptors are often inter-correlated, especially when

they are applied to a limited sound-set. Peters et al. (2011) found that the inter-

correlations are weakly affected between different input representations. The same is

not true when applying statistical operators to time varying descriptors: a change in

the operator strongly affects the structure of the inter-correlations. However, in order

to summarize the behavior of time varying descriptors we are using only the median

values. It should also be noted that we normalize the signal before obtaining any input

representation.

2.2.1 Short-time Fourier Transform (STFT)

The STFT representation is obtained by using a Hamming analysis-window of 1024

points with a hop size of 256 points. The audio descriptors can then be derived from the

6



2.2 Input Representations

Figure 2.1: Audio descriptors, corresponding number of dimensions, unit, abbreviation

used as the variable name in the MATLAB code and input signal representation. Units

symbols: − = no unit (when the descriptor is “normalized”); a =amplitude of audio signal;

F=Hz for the Harmonic, STFTmag and STFTpower representations, and ERB-rate units

for the ERBfft and ERBgam representations; I=a for the STFTmag representation and a2

for the STFTpow, ERBfft and ERBgam representations. [From Peeters et al. (2011)]

7



2. AUDIO DESCRIPTIVE ANALYSIS

amplitude spectrum of the STFT. This representation will be used mainly for examining

noisy signals that cannot be represented adequately by a sinusoidal or harmonic model.

For reconstruction purposes, sometimes it will be useful to split the signal to its

sinusoidal (deterministic) and noise (stochastic) parts. We achieve this decomposition

by using the adaptive sub-band analysis and fast high resolution (HR) subspace tracking

method, which is implemented in the DESAM Toolbox (Lagrange et al., 2010). The

stochastic part can then be analyzed by the STFT representation and the deterministic

part, by a harmonic or sinusoidal representation.

(a) (b)

Figure 2.2: Signal decomposition based on the fast HR subspace tracking method: Fourier

spectrogram of a violin sound (a) and its deterministic part (b).

2.2.2 Harmonic Representation

Harmonic descriptors such as the tristimulus values, the odd-to-even ratio, and inhar-

monicity, can only be derived from a harmonic representation. In Timbre Toolbox the

input signal is analyzed using a Blackman window of 100ms with a hop size of 25ms.

Afterwards, a reference-partial is defined by estimating the fundamental frequency

for each frame. The harmonic (or quasi-harmonic) partials can then be computed, such

that the content and energy of the spectrum is best explained. The total number of

computed partials defaults to 20 though it can be increased as much as the estimated

fundamental frequency allows for.

8



2.2 Input Representations

2.2.3 Sinusoidal Representation (based on SPEAR)

When we synthesize (or resynthesize) sounds based on additive-synthesis, the sinusoidal

model is the most appropriate representation for deriving audio descriptors and adds

a lot of flexibility during the synthesis stages. In order to make our approach more

accessible to sonologists, we derive this representation by using SPEAR (Klingbeil,

2009). Though it was originally conceived as software to aid spectral composition, it

suits the needs of this thesis by proving to be a reliable tool for analysis and resynthesis.

SPEAR performs partial tracking using a variation of the McAulay-Quatieri tech-

nique along linear prediction of the partial amplitudes and frequencies, as to determine

the best continuation for the sinusoidal tracks.

Figure 2.3: A problem that linear prediction has to solve: partial tracking conflicts due

to glissandi. ki is the frame number. [From Klingbeil (2009)]

Users can specify the length of a Blackman analysis-window as well as the amplitude

thresholds above which the sinusoidal components are computed. Tracking only the

perceptual significant partials eliminates redundant information and results in faster

computations and easier manipulations.

The results of this analysis can be exported as a text file from which we can gather

the necessary data to compute the audio descriptors. The text format is shown in

Figure 2.4.

9



2. AUDIO DESCRIPTIVE ANALYSIS

Figure 2.4: The par-text-frame-format specification. Following the frame-data line, each

line contains the breakpoints for one frame. N indicates the number of peaks in each frame.

The index values connect peaks from frame to frame. Each line is separated by a newline

character. [From Klingbeil (2009)]

Figure 2.5: A screenshot of SPEAR. The analysis is performed on the deterministic part

of a flute sound. y-axis represents frequency (in Hz). x-axis represents time (in seconds).

10



2.3 A formalization of Audio Descriptors

Sinusoidal modeling might fail to represent accurately dense polyphonic material,

noisy or reverberated signals and sounds with sharp transients. However, audio descrip-

tors are not meant to capture the fine details of the spectrum and in the present thesis,

manipulating and transforming the original material is more crucial than achieving a

perfect reconstruction.

2.2.4 Temporal Energy Envelope

The temporal envelope of the input-signal can be derived either from the Timbre Tool-

box or the sinusoidal representation. Timbre Toolbox derives the temporal envelope

from the amplitude of the analytic signal given by the Hilbert transform. In a sinu-

soidal representation it is derived simply by calculating the sum of partial amplitudes

for each frame.

2.3 A formalization of Audio Descriptors

In this section, we present a formalization of audio descriptors that are drawn from the

Timbre Toolbox and are relevant to the present study. Formalizations of a broader class

of descriptors can be found in: Peeters (2004); Lartillot and Toiviainen (2007); Peeters

et al. (2011). In the following, fh(tm) and ah(tm) denote the frequency and amplitude of

the hth STFT bin or partial at time tm. ph(tm) is the normalized amplitude: ph(tm) =

ah(tm)/
∑H

h=1 ah(tm), where H is the total number of bins or partials.

• Spectral centroid is the spectral center of gravity (Figure 2.6):

m1 =

H∑
h=1

fhph(tm) (2.1)

• Spectral spread (or spectral standard deviation) represents the spread of the

spectrum around the spectral centroid (Figure 2.7):

m2 = (

H∑
h=1

(fh −m1(tm))2ph(tm))1/2 (2.2)

11



2. AUDIO DESCRIPTIVE ANALYSIS

(a) (b)

Figure 2.6: Spectral centroids: (a) has a higher spectral centroid than (b).

(a) (b)

Figure 2.7: Spectral spread: (a) has a higher spectral spread than (b).

12



2.3 A formalization of Audio Descriptors

• Spectral skewness measures the asymmetry of the spectrum around the spectral

centroid. m3 < 0 indicates that there is more energy at frequencies lower than

the spectral centroid, m3 > 0 more energy at higher frequencies and m3 = 0 a

symmetric distribution (Figure 2.10):

m3 = (
H∑

h=1

(fh −m1(tm))3ph(tm))/m3
2 (2.3)

• Spectral kurtosis measures the flatness of the spectrum around the spectral

centroid:

m4 = (

H∑
h=1

(fh −m1(tm))4ph(tm))/m4
2 (2.4)

• Spectral decrease averages the set of slopes between frequencies fh and f1:

decrease(tm) =
1∑H

h=2 ah(tm)

H∑
h=2

ah(tm)− a1(tm)

h− 1
(2.5)

• Spectral roll-off is the frequency fc(tm) below which 95% of the signal energy

is contained:

fc(tm)∑
f=0

a2f (tm) = 0.95

sr/2∑
f=0

a2f (tm), where sr is the sample rate. (2.6)

• Tristimulus values are three different energy ratios of the harmonics. (Fig-

ure 2.8):

T1(tm) =
a1(tm)∑H
h=1 ah(tm)

(2.7)

T2(tm) =
a2(tm) + a3(tm) + a4(tm)∑H

h=1 ah(tm)
(2.8)

T3(tm) =

∑H
h=5 ah(tm)∑H
h=1 ah(tm)

(2.9)

• Inharmonicity measures the deviation of partials’ frequencies fh from purely

harmonic frequencies hf0:

inharmonicity(tm) =
2

f0(tm)

∑H
h=1 |(fh(tm)− hf0(tm))|a2h(tm)∑H

h=1 a
2
h(tm)

(2.10)
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(a) (b)

Figure 2.8: Tristimulus values.

• Spectral deviation measures the deviation of partials’ amplitudes from a smoothed

envelope SE (Figure 2.9):

deviation(tm) =
1

H

H∑
h=1

(ah(tm)− SE(fh, tm)) (2.11)

SE(fh, tm) =
1

3
(ah−1(tm) + ah(tm) + ah+1(tm)), 1 < h < H (2.12)

(a) (b)

Figure 2.9: Harmonic spectral deviation.

• Odd-to-Even ratio is the energy ratio of odd harmonics to even harmonics

14



2.3 A formalization of Audio Descriptors

(Figure 2.10):

oer(tm) =

∑H/2
h=1 a

2
2h−1(tm)∑H/2

h=1 a
2
2h(tm)

(2.13)

(a) (b)

Figure 2.10: Two waveforms with extreme odd-to-even ratios. (a) has positive skewness

and (b) has negative.

• Spectral variation is a measure of spectral flux. It represents how the spectrum

varies over time (Figure 2.11):

variation(tm, tm−1) = 1−
∑H

h=1 ah(tm−1)ah(tm))√∑H
h=1 ah(tm−1)2

√∑H
h=1 ah(tm)2

(2.14)
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Figure 2.11: Spectral variation of an electric guitar sound.
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Chapter 3

Spectral, Temporal and

Spectrotemporal Attributes of

Timbre

In this chapter we present a brief review of results and conclusions from past experi-

ments that led to our current understanding of timbre and how they relate to audio

descriptors. Summarizing these conclusions will help us to use audio descriptors in a

synthesis context more effectively.

In general, there are two approaches used in timbre studies: in the first one, the

researcher performs unidimensional studies by directly measuring presumed timbre at-

tributes; the second approach requires no presumptions regarding the nature and num-

ber of attributes. The researcher measures relationships between stimuli and the timbre

structure is uncovered by using multidimensional scaling techniques.

3.1 Unidimensional Studies

Lichte (1941) proposed that brightness, roughness and fullness are attributes that can

be found in any complex sound: brightness was defined as a function of the midpoint of

the energy distribution among partials; roughness was associated with the presence of

high partials and their relative location (i.e. inharmonicity) in the frequency continuum;

fullness was associated with the odd to even ratio of the partials. He also suggested

that roughness and brightness could be thought of as being different functions of the
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same variable, which defines the complexity of frequency ratios among partials.

Other examples of unidimensional studies can be found in early instrument-identification

experiments. Berger (1964) was among the first to study the effect of temporal at-

tributes. Listeners were asked to identify recorded wind-instrument tones when played-

back: unaltered; backwards; with their attack and decay portions suppressed; and

through a 480 Hz low pass filter1. Identification was most perturbed by the filtering

process, then by attack and decay suspension and least from reverse playback.

3.2 Multidimensional Studies

In multidimensional studies listeners make paired comparisons of the sound stimuli

by judging their similarity. Sounds are usually equalized in terms of pitch, loudness

and perceived duration, as to shift listener’s focus to a more restricted set of timbre

attributes. The measurements are made on a numerical scale ranging from “identical”

or “very similar” to “very dissimilar”.

Multidimensional scaling (MDS) transforms the dissimilarity ratings into distances

represented in a multidimensional space. As a result, perceptually similar sounds ap-

pear close together and dissimilar sounds are farther apart. The dimensionality of

the MDS solution can be decided a-priori by the researcher, or determined by using a

statistical criterion or a goodness-of-fit measure.

The basic MDS model (Kruskal, 1964) assumes that timbres differentiate only by

the same continuous dimensions. Extended MDS models such as the EXSCAL (Wins-

berg & Carroll, 1989) can account for additional dimensions or distinguishing features

that are specific to individual sounds among the stimuli, called “specificities”. Mod-

els like INDSCAL (Miller & Carterette, 1975) and CLASCAL (McAdams, Winsberg,

Donnadieu, De Soete & Krimphoff, 1995), in addition to specificities, use weights to

examine how much the judgments of an individual listener rely on each dimension,

or to sort listeners into different classes such as non-musicians, music-students and

professionals.

The final step of the analysis is the psychophysical interpretation of the dimensions

and relies heavily on the intuition of the researcher. As the number of dimensions grows

the model will better explain the ratings of the listeners, but the interpretation of the

1Recordings were made at F4 concert pitch corresponding to approximately 349 Hz.
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3.2 Multidimensional Studies

dimensions becomes more difficult. A relationship between the perceptual dimensions

and acoustical parameters is found by computing correlations between the location of

sounds on each axis, and a number of physical parameters such as spectral centroid or

attack time.

Figure 3.1: Stages in the multidimensional analysis of dissimilarity ratings of sounds

differing in timbre. [From McAdams (2013)]

Plomp (1970, 1976) was among the first to use multidimensional scaling in tim-

bre studies using Kruskal’s MDSCAL model. Subjects rated the similarity of synthe-

sized steady-state spectra derived from recorded instrument tones. The MDS solution

yielded two dimensions for synthetic organ-pipe stimuli and three dimensions for a set

of wind and string stimuli. Though he did not give a perceptual interpretation of the

dimensions, he analyzed the spectral distances2 between the stimuli with MDSCAL

and observed that the spatial solution was similar to that of the dissimilarity ratings.

2Differences in energy levels across a bank of 1/3-octave filters.
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Wedin and Goude (1972), in another identification experiment, found a three- di-

mensional model by using factor analysis on dissimilarity ratings of wind and string

instruments. Their model revealed a cognitive structure that is in line with the tra-

ditional classification into woodwind, brass and string instruments. The physical cor-

relates of the extracted factors were derived from properties of the spectral envelopes:

the first factor related to the high strength of upper partials –“sonority” or “overtone

richness”; the second factor related to successive intensity-decrease of the upper par-

tials –“dullness” or “overtone poorness”; the third factor related to “low fundamental

intensity and an increasing intensity of the first overtones”.

3.3 Timbre Spaces

The projection of the stimuli against the MDS axes is called a “timbre space”. Miller

and Carterette (1975) gave the first example of a timbre space (shown in Figure 3.2)

using synthesized tones for studying timbral similarity. They varied the number of

harmonics, the amplitude envelope and the onset asynchrony of the harmonics. By

using the INDSCAL model they found three dimensions: two of them were related with

the number of harmonics; the remaining dimension was related both to the amplitude

envelope and onset asynchrony.

Grey (1977) used synthetic sounds based upon an analysis of orchestral instru-

ments. He found that a three-dimensional space (shown in Figure 3.3) was the most

useful for interpreting the dissimilarity ratings. The first dimension was associated with

the “spectral energy distribution”. Though he did not attempt to give a quantitative

interpretation, his observations on the nature of distributions were related to measure-

ments of the spectral centroid, spectral spread and spectral skewness. The other two

dimensions were related to temporal attributes. The second dimension was associated

with the onset synchronicity of the partials during the attack and decay portions of

a tone, as well to the overall “spectral fluctuation”. The third dimension was related

to the noisiness during the attack time –“precedent high frequency”, “low amplitude

energy” and “inharmonicity energy”.

Grey and Gordon (1978) replicated Grey’s results and were the first to quantify

the dimension related to the spectral energy distribution, by evaluating a set of math-
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3.3 Timbre Spaces

Figure 3.2: A timbre space from Miller and Carterette (1975). Dimension 1 (number

of harmonics) on the abscissa is plotted against Dimension 2 (five harmonics versus 3

or 7 harmonics) on the ordinate (a) and against Dimension 3 (envelope) on the ordinate

(b). The shape of a point stands for horn, string, or trapezoidal envelope. The pair of

letters codes number of harmonics and onset time of harmonics, respectively. Thus, 5E,

5L, 5I stands for a five-harmonic tone with the onset time of the nth harmonic governed by

an exponential, a linear and a negative exponential curve respectively. [From Miller and

Carterette (1975)]
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Figure 3.3: Grey’s (1977) timbre space. Three-dimensional INDSCAL solution derived

from similarity ratings for 16 musical instrument tones. Two-dimensional projections of

the configuration appear on the wall and the floor. Abbreviations for the instruments:

O1 and O2, two different oboes; C1 and C2, E-flat and bass clarinets; X1 and X2, alto

saxophone playing softly and moderately loud, and X3, soprano saxophone, respectively;

EH, English horn; FH, French horn; S1, S2, and S3, cello playing with three different

bowing styles: sul tasto, normale, sul ponticello, respectively; TP, trumpet; TM, muted

trombone; FL, flute; BN, bassoon. Dimension 1 (top-bottom) represents spectral envelope

or brightness (brighter sounds at the bottom). Dimension 2 (left-right) represents spectral

flux (greater flux to the right). Dimension 3 (front-back) represents degree of presence of

attack transients (more transients at the front). Hierarchical clustering is represented by

connecting lines, decreasing in strength in the order: solid, dashed, and dotted. [From

Donnadieu (2007)]
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3.3 Timbre Spaces

ematical models. The model that correlated most strongly with that dimension was a

spectral centroid measure derived from a loudness function.

More systematic attempts to interpret quantitatively perceptual dimensions start

with the work of Krimphoff (1993) and Krimphoff, McAdams and Winsberg (1994)

based on Krumhansl’s (1989) timbre space. Krumhansl used synthetic sounds, created

by Wessel, Bristow and Settel (1987), which imitate traditional instruments and hy-

brids that were synthesized by combing spectrotemporal characteristics of two sounds.

Through MDS she found three dimensions, which she related to “Spectral Flux”, “Tem-

poral Envelope” and “Spectral Envelope”.

Krimphoff et al. (1994) made an acoustic analysis on the sound set used in Krumhansl’s

study and examined the correlations of various formal models with each axis of that

timbre space. The dimensions of “Spectral Envelope” and “Temporal Envelope” cor-

related strongly (r = 0.94) with spectral centroid and log-attack time respectively.

Interestingly, the evaluated spectrotemporal models did not give satisfactory results

for interpreting the dimension of “Spectral Flux”. Spectral flux, defined by the authors

as the RMS variation of the instantaneous spectral centroid over the mean spectral cen-

troid, could only explain 34% of the variance along that dimension. On the contrary,

spectral models appeared to be more correlated with that axis: the odd-to-even ratio

and spectral deviation accounted for 51% and 72% of the variance respectively.

One of the aims of McAdams’ et al. (1995) study was to validate Krimphoff’s et al.

(1994) quantitative models using a large number of subjects (88) with varying degrees

of musical training. They correlated each model with the derived MDS coordinates

of 18 sounds drawn from Krumhansl’s sound set. The first and second axes of the

three-dimensional solution (shown in Figure 3.4 ) correlated strongly (r=0.94) with

log-attack time and spectral centroid as in Krumhansl’s study, but spectral deviation

did not correlate significantly with the third dimension. Spectral variation3 gave the

highest correlation coefficient for that dimension, but it accounted for only 29% of the

variance.

Lakatos (2000) used a broader and a more heterogeneous set of stimuli compared to

previous studies, including pitched and unpitched percussive sounds, sustained sounds

3Spectral variation is another measurement of spectral flux. It is defined as the average of the

correlations between amplitude spectra in adjacent time windows (Krimphoff et al., 1994). See also

equation 2.14.
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Figure 3.4: McAdam’s et al. (1995) timbre space. The CLASCAL solution has three

dimensions with specificities (the strength of the specificities is shown by the size of the

square). The acoustic correlates of each dimension are also indicated. Abbreviations for the

instruments: vbs = vibraphone; hrp = harp; ols = oboelesta (oboe\celesta hybrid); hcd =

harpsichord; obc = obochord (oboe\harpsichord hybrid); gtn = guitarnet (guitar\clarinet

hybrid); cnt = clarinet; sno = striano (bowed string\piano hybrid); ehn = English horn;

bsn = bassoon; tpt = trumpet. [From McAdams (2013)]
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of pitched orchestral instruments and different modes of excitation. The MDS solution

yielded three dimensions for the percussive set and two dimensions for the harmonic and

combined set (Figure 3.5). These results confirmed the salience of spectral centroid and

log-attack time. The third dimension of the percussive set was associated with “timbral

richness” but, as with previous studies, was difficult to interpret psychophysically.

(a) (b)

Figure 3.5: Lakatos’ (2000) timbre space. CLASCAL solution for the percussive set (a)

and the combined set (b). Dimension 1 is correlated with log-attack time, dimension 2

with spectral centroid and dimension 3 with the participants’ VAME ratings for timbral

“richness”. [From Lakatos (2000)]

3.4 Confirmatory Studies

Correlations however, are not proofs of cause-effect relations, so there is a need for

confirmatory studies to validate the results of exploratory studies. Grey and Gordon’s

(1978) results supported the interpretation of the dimension related to spectral shape

in Grey’s (1977) study. They used half of Grey’s stimuli unaltered and made paired

modifications on the rest, by exchanging the spectral envelopes between two sounds

within each pair while trying to preserve other characteristics. Comparing their results

with Grey’s timbre space, they observed that the sounds that had exchanged spectral

envelopes also exchanged positions along the axis related to “Spectral Energy Distri-

bution”. Slight alternations in positions along the other two axes were also observed
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since spectral modifications also affected temporal characteristics of the original tones.

The main goal of Caclin, McAdams, Smith, and Winsberg’s (2005) study was to

validate the interpretation of the “problematic” third dimension against the perceptual

saliency of attack time and spectral centroid. They used synthetic tones made up

of 20 harmonics with precisely controlled attack time, spectral centroid and spectral

irregularity or spectral flux. Spectral irregularity was controlled by attenuating the

even harmonics, and spectral flux by a sinusoidal variation of the spectral centroid over

the first 100 msec. The dissimilarity judgments confirmed the perceptual saliency of

attack time, spectral centroid and spectral irregularity. The effect of spectral flux was

tested against the dimensions of attack time and spectral centroid: when all parameters

varied concurrently, the effect of spectral flux on the dissimilarity ratings was at best

minimal, and was only used to differentiate sounds that had the highest spectral flux

values; when both the attack time and spectral centroid were held constant, it was used

to differentiate sounds that both had high spectral flux values, or to distinguish sounds

that had high versus low spectral flux; when the attack time or spectral centroid were

held constant, the effect of spectral flux was more strongly inhibited by attack time

than spectral centroid, though it was used by listeners to a much lesser extent than the

other two parameters. The authors also noted that their results could be different if

spectral flux was present in the sustained portion of the tone, or if it had been modeled

differently.
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Chapter 4

Verbal Attributes of Timbre

Despite the lack of a specific sound-related vocabulary, we often use language to com-

municate sound. For example, we can verbally describe an action, or the method of

excitation of a sound object (eg. bowed, struck), the material of the vibrating object

(eg. metallic), the temporal and spectrotemporal characteristics of a certain sound (eg.

rustle noise), and its spectral characteristics (eg. bright). Although words often fail

to describe the complexity of sounds, their use indicates that essential sound qualities

have been recognized.

In this chapter we attempt to create a link between verbal attributes of timbre and

a set of audio descriptors. Such an approach can offer insight into acoustical modeling

based on semantic and subsequently on perceptual dimensions.

4.1 Previous Studies on Timbre Semantics

Studies on timbre semantics typically use a large number of verbal scales on which

subjects rate the stimuli. The goal is usually the elicitation of a number of verbal de-

scriptors, or the identification of semantic dimensions that encompass these descriptors,

by using data-reduction techniques such as principal component analysis (PCA) and

factor analysis (FA).

According to the semantic differential method (eg. Lichte, 1941; von Bismarck,

1974), the extremes of the scales are labeled by two opposing verbal attributes such as

“bright - dull”. A potential problem with the semantic differential method is that the

bipolar opposites may not be antipodes (Kendall & Carterette, 1993a). A variant of
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that method is the verbal attribute magnitude estimation (VAME) according to which

the extremes of the scale are labeled by an adjective and its negation such as “bright

- not bright” (Kendall & Carterette, 1993a). Other studies (eg. Faure, McAdams &

Nosulenko, 1996; Štěpánek, 2006) instead of using a predefined vocabulary, acquire

verbal descriptors based on free verbalizations that listeners use to describe timbre

differences.

In Lichte’s (1941) experiment, subjects judged the dissimilarities of synthetic tones

using the scales “rough - smooth”, “bright - dull” and “thin - full”. In von Bismarck

(1974) two groups of subjects comprising musicians and non-musicians rated 35 syn-

thetic sounds on 30 verbal scales, which they had previously chosen themselves from

an initial set of 69 scales. A factor analysis on the group of musicians revealed four

factors, which were labeled: “dull - sharp”, “compact - scattered”, “full - empty” and

“colorful - colorless”. The “dull - sharp” factor was the most prominent accounting for

44% of the variance, while all factors together accounted for 90% of the variance. Pratt

and Doak (1976) tested the scales “dull - brilliant”, “pure - rich”, and “cold - warm”

using synthetic sounds. A sine wave was generally described as pure, dull and warm,

while sounds with low amplitude on the fundamental frequency were described as rich,

brilliant and cold.

In Kendall and Carterette (1993a) subjects rated wind instrument tones on eight

bipolar opposites drawn from von Bismarck’s experiment: “hard - soft”, “sharp - dull”,

“loud - soft”, “complex - simple”, “compact - scattered”, “pure - mixed”, “dim - bril-

liant” and “heavy - light”. Differentiation results using the semantic differential and

VAME were poor indicating that the chosen adjectives were inappropriate for rating

this type of natural timbres. Kendall and Carterette (1993b) made the same experi-

ment using the VAME method but this time the adjectives were chosen from Piston’s

(1955) Orchestration. By using principal component analysis they found four factors

accounting for 90.6% of the variance. Factor 1 was labeled “Power Factor” and was

loaded positively by strong, tense, tremulous, ringing and resonant and negatively by

smooth, soft, light, weak, and mellow. Factor 2, labeled “Strident Factor”, was loaded

positively by nasal, edgy, and brittle and negatively by rich, round, full, warm, and

smooth. Factor 3, the “Plangent Factor” was loaded positively by ringing, resonant

and negatively by crisp and brilliant. Factor 4 was labeled “Reed Factor” and was

loaded by reedy, fused, and warm. They also found a two-dimensional solution using
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MDS: the first axis was associated with “nasality - richness” and the second one with

“reediness - brilliance”.

Faure et al. (1996) elicited a number of verbal descriptors by asking subjects to

judge sounds using expressions of the form: “sound 1 is more or less X than sound 2”.

Dissimilarity ratings were performed on Krumhansl’s (1989) sound-set before and after

verbalizations. The resulting MDS solutions, before and after verbalizations, were simi-

lar, indicating that verbalization did not have an impact on the dissimilarity judgments.

Most of the verbal descriptors correlated with more than one dimension, but a few of

them correlated only with a single one: round was correlated with spectral centroid;

dry was correlated with log-attack time; brilliant and bright were correlated with spec-

tral flux. Štěpánek (2006) hypothesized four dimensions of timbre: “gloomy - clear”,

“harsh - delicate”, “full - narrow” and “noisy”. The verbal descriptors were collected

from spontaneous verbalizations that listeners used to judge the quality of violin and

organ-pipe sounds, and from a non-listening experiment that measured the dissimilar-

ity between pairs of verbal attributes. Dislay, Howard and Hunt (2006) used samples of

stringed, brass, woodwind and percussive instruments from the MUMS sound library

(McGill University Master Samples). Through principal component analysis they found

four salient dimensions: “bright, thin, harsh - dull, warm, gentle”, “pure, percussive -

nasal”, “metallic - wooden” and “evolving”.

In Zacharakis, Pastiadis and Reiss (2014) English and Greek participants describe

musical instrument tones by estimating verbal attribute magnitude values on a pre-

defined set of adjectives presented in their native language. A factor analysis on the

two groups of listeners revealed three factors accounting for more than 80% of the vari-

ance in the data, which were labeled as: “depth-brilliance” for the Greek group and

“brilliance/sharpness” for the English group; “roundness - harshness” for the Greek

group and “roughness/harshness” for the English group; “richness/fullness” for the

Greek group and “thickness - lightness” for the English group. The inter-correlations

of these dimensions between the two groups support the notion of universality of timbre

semantics and the different labels were further merged to “luminance”, “texture” and

“mass”. A correlation analysis between semantic dimensions and acoustic parameters

associated: “texture” with the energy distribution of partials; thickness and brilliance

with inharmonicity and spectral centroid variation; fundamental frequency with “mass”

for the English group, and “luminance” for the Greek group.
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4.2 Acoustical Modeling based on Verbal Attributes of

Timbre

In the present study we quantify the relationships between verbal attributes of timbre

and a set of audio descriptors, having as an ultimate goal to create sounds that exhibit

the qualities of a verbal description.

The adjectives, stimuli and listeners’ ratings1 are derived from Zacharakis’ et al.

(2014) study. The following adjectives are used: bright, brilliant, cold, compact, dark,

deep, dense, dirty, distinct, dry, dull, empty, full, harsh, hollow, light, metallic, mussed,

nasal, rich, rough, rounded, sharp, shrill, smooth, soft, thick, thin, warm.

The sound-set, on which we compute the audio descriptors, consists of 23 sounds

with fundamental frequencies in a three-octave range. The following 14 instrument

samples are drawn from the MUMS library: violin, sitar, trumpet, clarinet and piano

at A3 (220 Hz); Les Paul Gibson guitar, baritone saxophone B flat at A2 (110 Hz);

double bass pizzicato at A1 (55 Hz); oboe at A4 (440 Hz); Gibson guitar, pipe-organ,

marimba, harpsichord at G3 (196 Hz); French horn at A#3 (233 Hz). The rest of the

samples are: flute at A4; Acid, Hammond, Moog, Rhodes piano at A2; Electric piano

(Rhodes), Wurlitzer, Farfisa at A3; Bowedpad at A4.

Figure 4.1 shows the mean ratings of bright, deep, warm, rounded, dirty and metal-

lic. Listeners performed the ratings on a scale from 0 to 100 and they were free to

choose as many adjectives as they felt were necessary for describing most accurately

each sound. A mean value of zero on a verbal scale (ex. sitar’s VAME on deep) means

that listeners did not choose that scale for describing a specific sound: it indicates that

a sound has zero amount of a certain quality, thus zero-values will not be treated as

missing values in the statistical analysis.

For the audio descriptive analysis we use the median values of a sub-set of harmonic

descriptors from Timbre Toolbox, with the number of extracted harmonics set to 20:

fundamental frequency, inharmonicity, tristimulus values, odd-to-even ratio, spectral

deviation, spectral centroid, spectral spread, spectral skewness, spectral kurtosis, spec-

tral decrease, spectral roll-off and spectral variation. Spectral slope was discarded in

favor of spectral decrease, because it is linearly dependent on the spectral centroid.

Harmonic energy and noise energy are parameters that are used to calculate noisiness.

1We are using the mean ratings of the English group of listeners.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.1: A sample of participants’ VAME ratings on the scales: (a) Bright; (b) Deep;

(c) Warm; (d) Rounded; (e) Dirty; (f) Metallic.
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However, the formulation of noisiness in the Timbre Toolbox cannot capture the “true”

noise quality of a signal and thus these three descriptors were also discarded.

We chose to use harmonic descriptors, because the sound-set is mainly harmonic,

and because they can be directly used as parameters to construct waveforms that have

a fixed number of harmonics. By using such waveforms we eliminate the perceptual

influence of other sound qualities that are not accounted for by the descriptors used

in the analysis. This further enables us to test the following assumption: if audio

descriptors do account for certain perceived qualities, then these qualities will also be

perceived through simple waveforms, which were constructed according to specific audio

descriptor values. All the analyses presented in the next subsections are performed after

ranking the data of listeners ratings and the values of audio descriptors.

4.2.1 Correlation Analysis between Verbal Attributes and Harmonic

Audio Descriptors

A good starting point for constructing waveforms that exhibit a certain quality would

be to inspect the correlations between the adjectives and audio descriptors, shown in

Tables 4.1 - 4.3. As an example, a low-pitched sound with strong overtones would be

perceived as rich: rich is negatively correlated with fundamental frequency (r = -0.477)

and positively with tristimulus 3 (r = 0.449).

Some adjectives (eg. full, cold) are not significantly correlated with any descriptors.

This might indicate that listeners used those adjectives inconsistently and spasmodi-

cally, or that the audio descriptors used in this analysis cannot capture such qualities.

4.2.2 Predictive Models of Verbal-Attribute Magnitudes

Though correlations are important, relying solely on them might be misleading if there

is a high multicollinearity between the independent variables (i.e. the audio descrip-

tors): if there are strong correlations (r>0.8) between the independent variables, as

in the present case2, we cannot decide which of the inter-correlated audio descriptors

dominates the perception of the dependent variable (i.e. the verbal description). To

2For example, spectral centroid is strongly correlated with spectral spread (r = 0.932) and spectral

roll-off (r = 0.957). If we had chosen a different representation, other than the harmonic one, these

correlations would be probably weaker.
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solve the problem of multicollinearity we are using data reduction techniques, which at

the same time can be used to build predictive models based on regression analysis.

Stepwise regression methods select predictors by calculating their statistical contri-

bution in explaining the variance in the dependent variable, and by looking at their

semi-partial correlation with the outcome. First, we tested the predictive ability of the

backward elimination method, the forward method and the hybrid forward - backward

elimination method, using an inclusion criterion of p<0.05 and an exclusion criterion

of p>0.1. As expected, models built with backward elimination explained more of the

variance than the other two stepwise methods.

Second, we use predictive models based on principal component analysis (PCA), as

this gives rise to mutually orthogonal components that are linear combinations of the

predictors. Partial least squares regression (Geladi & Kowalski, 1986; Wold, Sjöström

& Eriksson, 2001) was preferred over principal component regression (PCR) because it

maximizes the covariance between predictors and the dependent variable, while PCR

may underestimate important predictors because it does not take into account the

covariance between them and the dependent variable. The optimal number of com-

ponents for each dependent variable is selected according to the robust component

selection statistic (RCS), which combines the goodness-of-fit and the predictive ability

of the model (Engelen & Hubert, 2005).

Table 4.4 shows the variances explained using the backward elimination versus the

partial least squares regression (PLSR). As can be seen, PLSR performs better in most

of the cases. Figures 4.2 and 4.3 demonstrate the predicted magnitude of each sound

on the scales of bright, deep, warm, rounded, dirty and metallic according to PLSR,

against the participants’ ranked ratings. The beta regression coefficients for every scale

are reported in tables 4.5 - 4.7.

4.2.3 Conclusions

Preliminary results based on judging and predicting the qualities of synthetic tones

show that clusters of audio descriptors, as well as their relative values within the clus-

ter, account for sound qualities expressed by the adjectives. The tones were constructed

by altering the properties of sawtooth-waveforms according to a family of audio descrip-

tors, which was indicated by inspecting the correlations between them and the verbal

attributes. For example, to construct a palette of clear and not clear sounds, we used
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(a) (b)

(c) (d)

(e) (f)

Figure 4.2: (a), (c), (e): predicted verbal magnitude based on PLSR. (b), (d), (f):

participants’ ranked ratings.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.3: (a), (c), (e): predicted verbal magnitude based on PLSR. (b), (d), (f):

participants’ ranked ratings.
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sawtooth-waveforms with different fundamental frequencies and different amounts of

inharmonicity3.

Depending on the adjectives, audio descriptors in general form different multidi-

mensional spaces in which sounds are located according to their verbal-attribute mag-

nitudes. Furthermore, based on our analysis/resynthesis scheme, PLSR proves to be

a usefull tool for predicting the magnitude that each verbal attribute has on a given

sound. Therefore, it is possible to create, classify and order sounds using audio param-

eters that correspond to verbal descriptions.

3Inharmonicity was added by varying the inharmonicity coefficient according to the formula:

fn = nfo
√

(1 + an2), where n is the harmonic and a the inharmonicity coefficient.
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Audio Descriptors Bright Brilliant Clear Cold Compact

Fundamental Frequency .479* .567**

Inharmonicity -.525* -.501*

Tristimulus 1

Tristimulus 2

Tristimulus 3

Deviation -.497*

Odd/Even -.449*

Centroid .465* .492*

Spread .463* .483*

Skewness

Kurtosis

Decrease

Roll Off .438*

Variation

Dark Deep Dense Dirty Distinct

Fundamental Frequency -.794** -.756** -.578**

Inharmonicity .658** .649**

Tristimulus 1 -.504*

Tristimulus 2

Tristimulus 3

Deviation

Odd/Even .419* .446*

Centroid -.480* -.651**

Spread -.473* -.606**

Skewness

Kurtosis

Decrease .494*

Roll Off -.574**

Variation .487*

Table 4.1: Correlations. *p<0.05, **p<0.01.
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Audio Descriptors Dry Dull Empty Full Harsh

Fundamental Frequency

Inharmonicity .514*

Tristimulus 1 .527** -.602**

Tristimulus 2

Tristimulus 3 -.486* .625**

Deviation

Odd/Even

Centroid -.523* .496*

Spread -.507* .482*

Skewness -.536**

Kurtosis -.544**

Decrease -.503* .448*

Roll Off -.493* .570**

Variation

Hollow Light Metallic Mussed Nasal

Fundamental Frequency .555**

Inharmonicity -.510*

Tristimulus 1 .449* .495* -.499* -.644**

Tristimulus 2

Tristimulus 3 -.540** .708**

Deviation .436*

Odd/Even

Centroid .647**

Spread .589**

Skewness .482* -.567**

Kurtosis .509* -.539**

Decrease -.514* .512* .542**

Roll Off .708**

Variation .450*

Table 4.2: Correlations. *p<0.05, **p<0.01.
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Audio Descriptors Rich Rough Rounded Sharp Shrill

Fundamental Frequency -.477*

Inharmonicity -.525*

Tristimulus 1 -.664** .545** -.433* -.466*

Tristimulus 2

Tristimulus 3 .449* .567** -.485* .441*

Deviation

Odd/Even -.508*

Centroid .436* .714**

Spread .418* .715**

Skewness .461* -.538**

Kurtosis .477* -.522*

Decrease .640** -.454*

Roll Off .418* .421* .700**

Variation

Smooth Soft Thick Thin Warm

Fundamental Frequency -.571**

Inharmonicity .417*

Tristimulus 1 .514* .554** .586**

Tristimulus 2

Tristimulus 3 -.532** -.451*

Deviation

Odd/Even .511*

Centroid .516* -.559**

Spread .565** -.535**

Skewness .508* .476*

Kurtosis .495* .469*

Decrease -.436* -.458* -.489*

Roll Off .542** -.585**

Variation

Table 4.3: Correlations. *p<0.05, **p<0.01.
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Variance Explained (%)

Method Bright Brilliant Clear Cold Compact

BCKWD 60.6 56.8 63.1 0 85.8

PLSR 79.8 78.2 72.7 0.95 74.2

Dark Deep Dense Dirty Distinct

BCKWD 83.2 87 91.5 83.3 35.3

PLSR 83.5 90.7 82.5 85.5 54.8

Dry Dull Empty Full Harsh

BCKWD 70.5 46.9 46.9 61.1 71

PLSR 50.2 76 49.4 60.5 70.7

Hollow Light Metallic Mussed Nasal

BCKWD 71.2 73.5 0 69 69.4

PLSR 78.5 87.5 95.4 77.9 61.3

Rich Rough Rounded Sharp Shrill

BCKWD 63.8 74.1 53.1 52.6 51.2

PLSR 60.6 48.4 89.7 81.3 49.5

Smooth Soft Thick Thin Warm

BCKWD 58.3 85.8 58.8 61.7 61.9

PLSR 61.6 95.9 56.1 80.9 99

Table 4.4: Variance explained by backward elimination (BCKWD) and partial least

squares regression (PLSR).
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Regression Coefficients (β)

Audio Descriptors Bright Brilliant Clear Cold Compact

Fundamental Frequency .47 .55 .53 0 -1.03

Inharmonicity -.11 .05 .01 0 .16

Tristimulus 1 .17 -.43 .14 -.05 -.29

Tristimulus 2 .07 .01 -.15 .06 -.26

Tristimulus 3 -.38 -1.01 -.44 -.02 -.15

Deviation -.33 -.48 -.23 -.13 -.68

Odd/Even -.56 .07 -.60 -.06 -.05

Centroid .15 .03 .12 .01 .31

Spread .29 .21 .03 -.03 .25

Skewness -.11 -.51 -.15 .03 .30

Kurtosis -.19 -.64 -.1 .02 .45

Decrease -.14 .37 -.17 .05 .1

Roll Off .02 -.20 -.18 -.01 .45

Variation .37 .30 -.24 .19 -.71

Dark Deep Dense Dirty Distinct

Fundamental Frequency -.32 -.25 -.41 .12 0

Inharmonicity .24 .03 -.06 .28 -.23

Tristimulus 1 .03 -.01 .07 -0.36 -.07

Tristimulus 2 -.16 -.39 -.15 .21 -.08

Tristimulus 3 .15 -.01 -.01 .47 .05

Deviation .07 .58 .34 .37 -.85

Odd/Even .14 .09 -.15 1.28 -.25

Centroid -.17 -.21 -.11 .48 0

Spread -.11 -.30 0 -.25 -.03

Skewness -.12 .07 -.1 .17 -.30

Kurtosis -.15 .06 -.13 .2 -.34

Decrease -.04 .08 .01 .34 -.03

Roll Off -.01 -.27 -.06 .27 -.07

Variation .02 .28 .56 .55 -.31

Table 4.5: Beta coefficients of partial least squares regression.
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Regression Coefficients (β)

Audio Descriptors Dry Dull Empty Full Harsh

Fundamental Frequency .07 .01 .08 -.23 -.01

Inharmonicity -.05 .03 -.06 -.18 -.04

Tristimulus 1 -.05 .06 .27 .25 -.18

Tristimulus 2 .03 .06 -.01 -.12 -.05

Tristimulus 3 .26 -.10 -.16 -.05 .14

Deviation -.62 -.06 .29 .52 -.31

Odd/Even -.18 .02 -.10 -.14 -.06

Centroid .07 -.08 -.10 -.18 .16

Spread .08 -.09 -.01 -.14 .12

Skewness -.16 .11 -.01 -.21 -.07

Kurtosis -.08 .10 0 -.21 -.08

Decrease -.04 -.04 -.25 -.20 .09

Roll Off .09 -.09 -.13 -.22 .16

Variation -.42 -.04 -.15 .10 .37

Hollow Light Metallic Mussed Nasal

Fundamental Frequency .33 .30 -.63 -.20 -.05

Inharmonicity -.04 -.23 -.88 .20 -.01

Tristimulus 1 .07 .31 -.50 -.29 -.23

Tristimulus 2 -.13 .42 .09 .45 .05

Tristimulus 3 -.11 -.21 -.49 .06 .34

Deviation .52 -.35 -.84 -.20 -.11

Odd/Even .27 -.01 .69 .31 .33

Centroid .09 .14 -.92 -.02 .16

Spread -.02 .13 -.10 .15 .12

Skewness .26 -.01 .75 .28 .02

Kurtosis .30 -.04 -.77 .23 .06

Decrease .01 -.43 .63 .47 .18

Roll Off .01 .10 .85 .27 .29

Variation -.03 .48 .48 .34 -.10

Table 4.6: Beta coefficients of partial least squares regression.
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Regression Coefficients (β)

Audio Descriptors Rich Rough Rounded Sharp Shrill

Fundamental Frequency -.21 -.07 0 .10 .14

Inharmonicity -.28 .01 -.20 -.41 -.14

Tristimulus 1 -.28 -.14 .17 -.08 -.10

Tristimulus 2 -.52 -.04 -.01 0 .01

Tristimulus 3 .16 .12 -.22 -.11 0

Deviation .24 -.09 .73 -.31 .10

Odd/Even -.13 -.03 -.05 -.31 -.10

Centroid -.10 .07 -.19 .03 .15

Spread -.45 .04 -.20 .08 .10

Skewness -.07 -.05 .11 -.11 .01

Kurtosis -.09 -.06 .11 -.09 .02

Decrease .33 .11 -.02 .03 .11

Roll Off -.36 .09 -.25 .02 .11

Variation .15 .25 -.11 -.41 .15

Smooth Soft Thick Thin Warm

Fundamental Frequency .04 -.30 -.29 .28 .69

Inharmonicity -.22 -.33 .21 .04 .33

Tristimulus 1 .23 .10 -.02 -.10 -.36

Tristimulus 2 .21 .03 -.17 .07 -.11

Tristimulus 3 -.18 -.74 .17 .05 -.39

Deviation .35 .20 .08 -.56 .40

Odd/Even -.12 -.53 .11 .16 .73

Centroid -.13 -.06 -.11 .28 .11

Spread -.13 -.27 -.07 .28 -.62

Skewness .03 .10 -.14 .05 -.66

Kurtosis .04 -.11 -.16 .07 -.39

Decrease -.15 -.10 0 -.03 -.03

Roll Off -.17 -.31 -.06 .32 -.70

Variation .02 .04 .08 .13 -.36

Table 4.7: Beta coefficients of partial least squares regression.
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Chapter 5

Audio Descriptive Synthesis

The conclusions drawn from past experiments and the analysis made in the previous

chapter revealed how audio descriptors interact with each other, and how they relate

and account for perceived sound qualities. That was an important first step that we

had to take before start making effective use of the audio descriptors in a synthesis

context. As Jean-Claude Risset points out:

“So, in order to profit from the immense sound resources offered by the

computer, it becomes necessary to develop a psychoacoustical science, in-

volving a knowledge of the correlations between the physical parameters

and the perceptible characteristics of sound.” (Risset, 1971)

Audio descriptive synthesis (AUDESSY) makes use of audio descriptors along ad-

ditive synthesis. Additive synthesis is a malleable technique for constructing sounds

based on a set of partials, which are precisely defined in terms of their frequency and

amplitude envelopes, and onset (or offset) synchrony (or asynchrony). Furthermore, the

wide range of operations that can be applied to sets of partials makes additive synthesis

attractive to composers. Most common operations include: time stretching or compres-

sion; changing the spectral density by adding or removing partials; pitch transposition

by preserving the frequency spacing between partials; expansion or compression in spec-

tral space by altering the frequency spacing between the partials; spectral tuning by

adjusting the partials’ frequencies to match a predetermined spectrum.

Additive synthesis is accomplished using SPEAR. First, we specify in a matrix

the number of partials, their time-varying amplitude and frequency values, and total
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duration. These values are then exported in the proper text format (shown in Figure

2.4) and imported to SPEAR. SPEAR will synthesize the final sound using a bank of

oscillators that interpolate linearly (in frequency and amplitude) between every time

frame.

Audio descriptors would normally measure the effect that such operations have

on the resulting spectrum, but in AUDESSY such cause-effect relations are either

eliminated or reversed: audio descriptors are used as global spectrum modulators (or

shapers) and pose structural constraints that allow us to control the higher-level or-

ganization of the partials. Thus, AUDESSY could be summarized in the following

steps:

1. Specification of the source-spectrum in terms of partials and their time varying

amplitude and frequency values.

2. Specification of the target-morphology in terms of audio descriptors.

3. Optional modulation of a single or multiple audio descriptors using as a carrier

the source-spectrum.

4. Synthesis of the final sound according to steps two and three while retaining as

much as possible the properties of the source.

In chapter 4 we used AUDESSY to create sounds according to a verbal description.

Previous approaches to sound synthesis based on verbal descriptions (Ethington &

Punch, 1994; Gounaropoulos & Johnson, 2006) have not investigated systematically the

relationships between adjectives and perceived sound qualities. Most importantly, the

qualities that were recognized and attributed to partials’ relations were not quantified.

Other attempts made to provide synthesis-control over timbral features are more

related to navigation between sounds in a feature space and thus they tend to emphasize

on the construction of hybrid tones rather than new ones (Hourdin, Charbonneau &

Moussa, 1997; Haken, Fitz & Christensen, 2007; Jehan & Schoner, 2001; Le Groux,

2006). Some other approaches focus on the resynthesis of sounds according to a very

limited set of audio descriptors and other sonic parameters, but they do not take

into account their inter-dependencies (Jensen, 1999; Park, Biguenet, Li, Richardson &

Scharr, 2007; Hoffman & Cook, 2007). For instance, altering the spectral centroid of a

sound will also affect its spectral spread, unless certain constraints are used.
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5.1 Optimization

AUDESSY gains control over the stability and variability of the synthesis parame-

ters using optimization. In other words, it uses constraints that allow some parameters

to vary while others are held as much invariant as possible.

5.1 Optimization

Optimization is a useful tool when one needs to make a single “best” decision through

a plethora of available choices. Xenakis (1992) used optimization based on linear pro-

gramming to compose the pieces Duel and Stratégie. In the paragraph related to the

analysis of Duel he wrote:

“It appeals to relatively simple concepts: sonic constructions put into mu-

tual correspondence by the will of the conductors, who are themselves con-

ditioned by the composer.” (Xenakis, 1992, p. 113)

More recently, optimization is used in computer-aided orchestration where the goal

is usually to find the best instrumental combination that approximates a target sound

(Rose & Hetrick, 2009; Carpentier & Bresson, 2010; ). An optimization scheme is a

necessity in AUDESSY since we are dealing with an underdetermined system: there are

fewer constraints (i.e. audio descriptors) than unknowns (i.e. partials’ amplitudes) and

the system has an infinite number of solutions. For instance, there is infinite number

of combinations of partials amplitudes for a given spectral centroid.

More specifically, we use the sequential quadratic programming (SQP) method im-

plemented in MATLAB, to solve the following problem: find the amplitude values ph

that minimize the sum of partials’ amplitudes for each time frame, using as constraints

the audio descriptors. For instance, if we use the spectral centroid as a constrain, the

problem will be formulated as follows:

Minimize:
∑H

h=1 ph, where ph is the amplitude of partial h and H is the total

number of partials.

Subject to: SC =
∑H

h=1 fhph, where fh is the frequency of partial h and SC

the target value of the spectral centroid.
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With the additional constrain 0 ≤ ph ≤ 1 and an initial vector P0.

The SQP method will find local rather than global solutions because it relies heav-

ily on the supplied initial vector P0, which is in our case the initial amplitude values

of the partials (step 1 in the previous paragraph). Thus, this allows us to come up

with the “best” sound: if there is a feasible solution and the initial spectrum satisfies

all constraints we will get back the same spectrum unaltered while if not, we get a

spectrum that is as much similar as possible to the initial one while having all of the

constraints satisfied.

5.2 Plausible Uses of AUDESSY

In this example, we present how AUDESSY can be used to construct a sound from

scratch. First, we specify the duration, fundamental frequency and calculate the num-

ber of harmonic partials using as an upper limit the Nyquist frequency. The amplitude

of each partial is calculated by the function that defines a sawtooth wave. Shimmer

and inharmonicity are added for each partial by using a tendency mask with a uni-

form probability distribution, a lower bound of ‘0’ and an upper bound of ‘0.5’ that

falls linearly to zero. Thus, we start from a noisy signal that gradually becomes in-

harmonic and finally a perfect sawtooth wave. We apply to the final spectrum the

amplitude envelope of a piano sound (Figure 5.1), and we use SPEAR to synthesize the

result (Figure 5.2). Figure 5.3 shows the effect of the above operations on spectral flux

(shown as the variation of spectral centroid). We shape further the spectrum by apply-

ing a lower and constant spectral centroid at 700 Hz. Figure 5.4 shows the result of the

optimization: the structure of the partials in the frequency space is maintained, with

the lower ones being significantly strengthened and the upper ones being attenuated.

Another plausible use of AUDESSY is related with timbre spaces. Timbre spaces

can be used to achieve timbral transpositions based on timbral intervals. A timbral

interval can be considered as a vector having a specific magnitude and orientation that

connects two different timbres inside a timbre space (Figure 5.5).

Ehresman and Wessel (1978) were the first to test if listeners can perceive timbral

analogies in a two-dimensional timbre space. They found that the interval between

timbres A and B would be perceived as analogous to another interval between timbres
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C and D if the vectors
−−→
AB and

−−→
CD have a similar magnitude and orientation. McAdams

and Cunibile (1992) tested further the vector model in the three-dimensional space from

Krumhansl (1989) by comparing timbral transpositions based on vectors that had: right

magnitude and right direction with respect to a reference vector; right magnitude and

wrong direction; wrong magnitude and right direction; wrong magnitude and wrong

direction.

Though the main result globally supported the predictive ability of the model,

the specificities that were present in the stimulus set distorted the transposed interval

vectors and therefore the subjective impression of timbral analogies. Therefore, timbral

transpositions may be more applicable to homogeneous timbre spaces, constituting of

synthesized sounds or blended combinations of several acoustic instruments (McAdams,

2013).

AUDESSY can be used to create uniformly spaced sounds by controlling the effect

of every perceptual dimension. Furthermore, on a given sound-set, the ideal sound for

achieving an accurate timbral transposition usually does not exists. With AUDESSY

we can fill the space by creating sounds that match the ideal timbre space coordinates

for a given timbral interval, and encapsulate, as much as possible, the properties of the

nearest sound-neighbors to the target points.
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Figure 5.1: Amplitude envelope of a piano sound.
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Figure 5.2: Synthesis without controlling the spectral centroid.
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Figure 5.3: Spectral flux as a result of the above operations.
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Figure 5.4: Synthesis with a fixed spectral centroid at 700 Hz.
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Figure 5.5: Examples of timbral intervals in a timbre space. The aim is to find an interval

starting with C and ending on a timbre D that resembles the interval between timbres A

and B. If we present timbres D1-D4 the vector model would predict that listeners would

prefer D2, because the vector CD2 is the closest in length and orientation to that of AB.

[From McAdams (2013)]
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