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Abstract

Nature’s place in the arts and music has been firmly established. For

many thousands of years, nature and life have provided, at least, ideas for

musical or aesthetic utility. This utility is usually based on visual and physi-

cal properties of the natural object or phenomenon being observed. In recent

decades the increase in computational power available for modeling actual

natural processes, has provided the arts new means of exploring nature.

Electronic music has always been a field strongly influenced by systematic

or model based approaches. In algorithmic music composition intra- as well

as extra-musical concepts have been used to generate musical material. An

example of the former being, Schoenberg’s twelve tone technique and the

latter, the use of dynamical systems and probabilistic functions by Xenakis.

As is the case with many compositional models, each has its problems.

In search for emergent phenomena, evolutionary algorithmic techniques

provide non-deterministic, extra-musical means to generate musical mate-

rial. Evolutionary Computation is comprised of ideas from the fields of Evo-

lutionary Biology, Computer Science and Complex Systems. The field of

evolutionary art, or in a broader sense, Artificial Life for art is a young field.

It also has received the necessary criticism often associated with technologi-

cal art. Taking a wide perspective, commonalities among all these fields will

be sought.

Outlined will be the relevant scientific ideas of Evolutionary Computa-

tion, in relation to algorithmic music composition. An overview of previous

musical work and philosophical problems will be given. My own implemen-

tation of a virtual ecosystem will be described.



Acknowledgments

I owe many thanks to everybody at the Institute of Sonology for creating

a tremendous learning experience in the past 4 years. The environment

has always been such a one that it is not only the curriculum but also the

students, events and neighboring departments that contribute to a pleasant

atmosphere and interesting learning experience.

Specific thanks go to Paul Berg as my thesis adviser, for guiding me

through a hectic last year and always providing critical comments which I’ve

come to realize, build my own critical ability. Raviv Ganchrow for providing

a highly in-depth exercise into sound and its multiple relations to space; the

necessary philosophical, spatial, and artistic thought associated with it. Joel

Ryan for providing guidance in many broadly oriented discussions about art,

music and science. All the other teachers for sharing their experience and

knowledge.

My dear friends for all the support, friendship and the opportunity to

practice my passions alongside theirs. My family and girlfriend for all sup-

port.



Contents

1 Evolution, Complexity and Algorithms 1

1.1 Evolutionary biology . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.1 Darwin and emerging ideas about Evolution . . . . . . 2

1.1.2 Genetics . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Complex Adaptive Systems . . . . . . . . . . . . . . . . . . . 6

1.2.1 Complexity . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2.2 Neural Networks and Swarms . . . . . . . . . . . . . . 7

1.3 Complexity through Algorithms in Music . . . . . . . . . . . . 10

1.3.1 Chaos in Music . . . . . . . . . . . . . . . . . . . . . . 10

2 Evolutionary Computation 13

2.1 What is computed evolution? . . . . . . . . . . . . . . . . . . 14

2.1.1 Genetic Algorithm . . . . . . . . . . . . . . . . . . . . 16

2.1.2 Genetic Programming . . . . . . . . . . . . . . . . . . 17

2.2 The fitness function . . . . . . . . . . . . . . . . . . . . . . . . 18

2.3 The representation problem . . . . . . . . . . . . . . . . . . . 20

2.4 The multi-dimensional search space . . . . . . . . . . . . . . . 21

2.4.1 The metaphoric search space . . . . . . . . . . . . . . . 22

3 Applications and Problems in Music 24

3.1 Evolutionary techniques in Music . . . . . . . . . . . . . . . . 24

3.1.1 Musical Organisms . . . . . . . . . . . . . . . . . . . . 26

3.1.2 Unconventional techniques . . . . . . . . . . . . . . . . 28

3.1.3 From musical interaction to audible traces . . . . . . . 29

3.2 Towards virtual ecologies . . . . . . . . . . . . . . . . . . . . . 31



3.2.1 Artificial Life for Music . . . . . . . . . . . . . . . . . . 34

3.3 Principles of Complex Adaptive Systems . . . . . . . . . . . . 36

4 Ecosystem approach and conclusions 39

4.1 Creatures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.1.1 Simulation Functionality . . . . . . . . . . . . . . . . . 40

4.1.2 Sound Functionality . . . . . . . . . . . . . . . . . . . 41

4.2 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

References 45



Chapter 1

Evolution, Complexity and

Algorithms

I like to think

(and the sooner the better!)

of a cybernetic meadow

where mammals and computers

live together in mutually

programming harmony

like pure water

touching clear sky.

Richard Brautigan

All Watched Over by Machines of Loving Grace

A short overview of evolutionary biology will follow ending with the

frameworks of genetics as a medium in which evolutionary mechanisms can

occur. Next, Complex Adaptive Systems (CAS) will be discussed. A field

dealing with the modeling or simulation of complex phenomena found in for

example, biology, economics and physics. Last, there will be some comments

on the use of algorithms in music.

Obviously any dealing with the history of science suffers from biases and

incomplete descriptions. I seek to give the reader a few fundamentals on

which the rest of the concepts in this text can be put. I will outline the

relations to music composition practice.
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1.1 Evolutionary biology

The subject of biological evolution is an enormously wide one. It is a highly

debated topic today, and probably has been so since the first humans had

vague notions of it. I will briefly describe some scientific history but please

note that there are many excellent references which will give the reader a

more complete overview of this history. (Bowler, 2003)

The inherent interdisciplinary nature of evolutionary biology needs to be

limited in the context of what might be musically useful. Specific information

about the various studies of organisms can be avoided, as well as ‘historic-’

or an ‘earth-science’ field like geology.

Out of the many sub-disciplines of evolution an overview of topics relevant

in our context is:

• The essence of the causes of biological evolution

• Genetics providing a protocol description for evolution

• Artificial Life in order to recreate biological phenomena

1.1.1 Darwin and emerging ideas about Evolution

As with many great scientific ideas, Charles Darwin was not the only person

to coin the idea of the occurrence of evolution in natural life. Only a year

before publication of “On the Origin of Species” (1859), Darwin received a

manuscript from Alfred Russel Wallace, titled “On the Tendency of Varieties

to Depart Indefinitely from the Original Type.” In order to give neither of the

gentlemen a priority their work was published around the same time.

Skipping ancient Chinese, Greek or Roman thought and greatly simplify-

ing the history, the surfacing of evolutionary ideas in Western thought occurs

during the enlightenment. George Louis Leclerc de Buffon already illustrates

the similarity between species in, “Historie Naturelle” (1749). He stated the

idea of ancestry and that the earth is much older than the Biblical 6000

years.
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Figure 1.1: Phylogenetic tree of life

In 1809 Jean-Baptiste Lamarck publishes his book, “Philosophie Zo-

ologique”. An influential idea was the concept of “Inheritance of acquired

characteristics”. Lamarckian inheritance is somewhat of an umbrella term,

but the main idea into which it translates is the fact that offspring acquire

characteristics (or traits) from their parents. Another concept was his “Use

and disuse”, in which organisms would lose their characteristics that they

would not require (and vice versa). According to Lamarck, life was still

spontaneously generated and common ancestry was not among his ideas.

The medium through which evolutionary processes occur was still to be un-

derstood.
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Modern day intricacies of evolutionary theory are still being debated. But

central ideas have emerged:

1. The living world is not constant. Evolution occurs, there seems to

be a scientific consensus.

2. Evolutionary change has a branching pattern. Species descend

from remote ancestors.

3. New species form when a population splits into isolated frag-

ments. The famous example being, Darwin’s observations of the

finches on different Galapagos Islands.

4. Evolutionary change is gradual. Organisms that differ dramat-

ically from their parents are often not able to survive in the same

environment

5. The mechanism of adaptive change is natural selection. Or-

ganisms with favorable traits will be more likely to survive; due to

competition for resources in the environment. Competition and vari-

able traits being important mechanisms.

The word mechanism implies a mechanical look at the process of evolu-

tion. For our purposes, the usage of evolutionary ideas in a musical context,

this is a necessary simplification. Continuing the mechanistic view for a mo-

ment, one might think there is an appearance of a ‘designed outcome’ due

to the actual functioning of the process evolution. The emergence of order

over time might be the strongest suggestion in this ‘design’-direction. The

emergence of order is what a composer, among other goals, might seek for

during composition.

1.1.2 Genetics

Explanations for evolutionary mechanisms of heredity and variation can be

found in the field of genetics. Important in this context are the high level

function and structure provided by discrete units, called genes.
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The work of Gregor Mendel (1822) laid out the first ideas in genetics in the

paper, “Versuche Uber Pflanzenhybriden” (1865). Mendel’s work concerned

the functioning of hereditary information. He set out to find how variation

and adaptation where organized in this medium of the genome. Note that

the terms like genes and genome were not yet used at that time. His results

were opposed to the ideas of Lamarckian inheritance, specifically the idea

that offspring acquired the traits of their parents.

Through many long experiments with pea plants, he found that each trait

of an organism could be assigned a discrete value, a so called allele. Each

trait is encoded in a gene pair, for example pea color, can be yellow or green.

A trait can be either dominant or recessive. Mendel’s Law of Segregation

states that a parent randomly passes one of the genes in a gene pair, to it’s

offspring. Whichever gene is dominant determines how the trait will express

itself. The Law of Independent Assortment claims that the gene pairs are

selected and transmitted independently of other gene pairs.

During the 1940’s and 50’s a lot of research went into DNA, Deoxyri-

boNucleic Acid, and established was the idea that this macromolecule was

the carrier of genetic information.

During the 1960’s and 70’s scientists where challenging the The Modern

Synthesis. This synthesis was, among others, mainly based on the work

of Darwin and Mendel. One of the assumptions being challenged was the

fact that evolution occurred gradually. The morphology of organisms simply

couldn’t change very rapidly (over the course of a few generations), according

to the way genetic mutation and evolution functioned. According to Stephen

Jay Gould and Niles Eldredge, there was clear evidence in the fossil records

that evolution could make jumps. This evidence was called the punctuated

equilibria. Referring to the the fossil records that showed long periods of

gradual change and sudden spikes of activity. Historical contingencies as well

as biological constraints might have a role as important as natural selection.

The mechanisms and causes of evolution are necessary to understand for

a composer wanting to utilize these concepts in music. Genetics provides a

medium through which evolution operates, enabling reasonable modelling of

the mechanisms.
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1.2 Complex Adaptive Systems

The sole concept of biological evolution provides one half of something that

might become musically useful. The concept of entities evolving and adapting

to their environment is a compelling one. Even when the analogies to musical

entities are still vague. The other half will be the environment these entities

actually reside in and all the complex dynamic behavior that is associated

with it.

At some point in history, reductionism begun failing in explaining com-

plex phenomena and systems in nature. The science of Complexity or Com-

plex Adaptive Systems has been emerging with a holistic view of these phe-

nomena and systems. It is a highly interdisciplinary science, especially rele-

vant to our later discussion about ecosystems.

1.2.1 Complexity

Assuming nature, and so the process of evolution which takes place in it, is a

complex system, we need a definition of what such a system might actually

be. Adding a term from evolution, we can ask; What is a complex adaptive

system? Mitchell describes a complex system as,

“a system in which large networks of components with no central

control and simple rules of operation give rise to complex collec-

tive behavior, sophisticated information processing, and adapta-

tion via learning or evolution” (Mitchell, 2009, p. 13)

Adding two often used terms she also gives this alternative definition,

“a system that exhibits nontrivial emergent and self-organizing

behaviors”

Especially in the context of a virtual ecosystem or artificial life, these defi-

nitions seem to hint at the potential such a system might posses. Adaptation

through learning or evolution, might be processes a composer is very familiar

with in terms of a possible struggle with musical material. Maintaining the
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musical context for a moment, notions like emergence and self-organization

are much harder to place within some sort of compositional activity. Ways

of interpreting these notions will become clear in chapter 3.

Goldstein describes emergence as,

“the arising of novel and coherent structures, patterns and prop-

erties during the process of self-organization in complex systems”

(Goldstein, 1999, p. 42)

At least structures, patterns and properties are words that can be also be

found in music composition vocabulary.

Complexity science historically stems, among others, from the field of

Cybernetics. This field concerns itself with structure of regulatory systems.

It’s most famous (and probably superficial) idea is that of the feedback loop.

Dynamical systems can be described as closed loops where every action will

cause a reaction within the system. In the book, “Cybernetics: Or Con-

trol and Communication in the Animal and the Machine” (1948), Norbert

Wiener lays the foundations for concepts like feedback, stability, the black

box, information and noise in the context of Cybernetics.

1.2.2 Neural Networks and Swarms

Through some examples of complex phenomena it might become apparent

how these might relate to evolutionary computation, or especially evolution-

ary mechanisms that take place within an artificial environment. When we

take the vantage point of a ecosystem, a neural network (within an organism)

might be seen as a low level complex system. Collective animal behavior can

be seen as phenomenon emerging on a high level.

Neural Networks are a popular example of a complex phenomenon

under study. Described as follows,

“The study of neural networks is the study of information pro-

cessing in networks of elementary numerical processors. In some
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cases these networks are endowed with a certain degree of bio-

logical realism and the goal is to build models that account for

neurobiological data. In other cases abstract networks are stud-

ied and the goal is to develop a computational theory of highly

parallel, distributed information-processing systems.” (Wilson R.,

1999, p. 597)

Information processing is achieved through a network of nodes, connected

by links. Each of these nodes has weighted inputs and an output. The

information received on the input will be processed by a so called activation

function. This function is dependent on the weighted values of the input and

can be roughly compared with a transfer function. A network is typically

ordered in layers. The Artificial Neural Network (ANN) is, among others,

defined by these parameters:

• The interconnection pattern of neurons

• The learning process for updating the weights of the neurons

• The activation function

ANN are typical machine learning algorithms that can be applied to large

data sets for function approximation, classification or other data processing

methods. A famous musical example utilizing the direct activity of a ANN

is David Tudor’s work “Neural Synthesis Nos. 6-9 ” (Tudor, 1995). He uses

custom build electronics that incorporated an experimental Intel chip that

simulated individual neurons in order to generate audio. The electronics was

called the Box. It contained 64 non-linear amplifiers with programmable

connections between all of them. 16 of the 64 ’neurons’ had RC-circuits

attached to them, which made them into an audio oscillator.

Other use of ANNs can be their inherent ability to derive meaning from

complex data. A typical machine learning application. Discussion on such

advanced usage of these connectionist models can be found in (Nierhaus,

2009, p. 205-223), along with musical applications.
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Swarm behavior are the phenomena seen in collective animal behavior.

We are all familiar with, flocking birds, the schooling of fish or herding be-

havior of the wildebeest. The famous example of swarm behavior, simulated

on a computer, is Boids by Reynolds (1987). It is a visual simulation of the

emergent behavior that can be observed in flocks of birds. Each bird is seen

as a autonomous agent or particle that can move in a 3D world. Each bird

obeys to three simple rules in relation to the other birds in the swarm,

1. Separation: steer to avoid crowding local flockmates (‘keep your dis-

tance’)

2. Alignment: steer towards the average heading of local flockmates

(‘watch your neighbors’)

3. Cohesion: steer or move toward the average position of local flock-

mates (‘follow your neighbors’)

The neighborhood around a bird is defined as a distance from its cen-

ter, with a gap behind the bird (it can’t see there). The result is complex

emergent, even life-like, flocking behavior of the particles that are animated.

A musical application can be found in Jones where the author describes

its relation to many terms already mentioned in this document, with:

“AtomSwarm, like any complex dynamical system, is fundamen-

tally a staging ground for a continuous parallel flux of interac-

tions, between forces, agents and resources. Convoluted feedback

loops arise between the multiple planes of interaction (human in-

put, rules, hormones and genomes), with sufficient complexity to

evoke the organic (in)stability of a natural ecosystem.” (Jones,

2008, p. 431)

The system even includes a genomic representation for the properties of

the agents. A subject to be discussed in the next chapter.
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1.3 Complexity through Algorithms in Music

In the previous two sections concepts of evolution and complexity where

discussed, sometimes in relation to musical results. Algorithmic composition

is the technique through which these ideas can enter music.

An algorithm is an effective method described in a finite list of instruc-

tions, in order to perform a certain function. Or more loosely defined, it is a

recipe, method or technique for doing something. (Wilson R., 1999, p. 11)

The use of algorithms in music can be traced back as far as the year

1025 with Guido of Arezzo’s work “Micrologus de disciplina artis musicae”.

(Nierhaus, 2009, p. 1) He created a method for converting text into melodic

phrases.

1.3.1 Chaos in Music

Iannis Xenakis is often referred to as a prime example of the usage of al-

gorithmic techniques in music. Micro as well as macro level compositional

decisions are extracted from abstract automata algorithms (Solomos, 2005)

to stochastic processes. Concerning his work in stochastic music he describes

in “Formalized Music”,

“For if, thanks to complexity, the strict, deterministic causality

which the neo-serialists postulated was lost, then it was necessary

to replace it by a more general causality, by probabilistic logic

which would contain strict serial causality as a particular case.

This is the function of stochastic science.”

In response to the conclusions Xenakis has on the ‘Crisis of Serial Music’,

he somewhat poetically continues to describes the potential of stochastic

techniques,
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“But other paths also led to the same stochastic crossroads - first

of all, natural events such as the collision of hail or rain with

hard surfaces, or the song of cicadas in a summer field. These

sonic events are made out of thousands of isolated sounds; this

multitude of sounds, seen as a totality, is a new sonic event. This

mass event is articulated and forms a plastic mold of time, which

itself follows aleatory and stochastic laws. If one then wishes to

form a large mass of point-notes, such as string pizzicati, one must

know these mathematical laws, which, in any case, are no more

than a tight and concise expression of chain of logical reasoning.

Everyone has observed the sonic phenomena of a political crowd

of dozens or hundreds of thousands of people. The human river

shouts a slogan in a uniform rhythm. Then another slogan springs

from the head of the demonstration; it spreads towards the tail,

replacing the first. A wave of transition thus passes from the

head to the tail. The clamor fills the city, and the inhibiting

force of voice and rhythm reaches a climax. It is an event of

great power and beauty in its ferocity. Then the impact between

the demonstrators and the enemy occurs. The perfect rhythm

of the last slogan breaks up in a huge cluster of chaotic shouts,

which also spreads to the tail. Imagine, in addition, the reports

of dozens of machine guns and the whistle of bullets adding their

punctuations to this total disorder. The crowd is then rapidly

dispersed, and after sonic and visual hell follows a detonating

calm, full of despair, dust, and death.

The statistical laws of these events, separated from their political

or moral context, are the same as those of the cicadas or the

rain. They are the laws of the passage from complete order to

total disorder in a continuous or explosive manner. They are

stochastic laws.” (Xenakis, 1992, p. 8-9)

11



The motivation for using stochastic algorithms in composing or synthe-

sizing new music, is a deep one. Fueled from intrinsic beauty, or fear to

some, that might be observed in potentially large scale emergent phenom-

ena. The similarity to expectations arising from evolutionary or complexity

related ideas, seems striking.

On self-organisation in music Blackwell and Young write,

“The development of higher level musical structure arises from

interactions at lower levels, and we propose here that the self-

organisation of social animals provides a very suggestive analogy.”

(Blackwell & Young, 2004, p. 137)

Taking somewhat of a leap to art theory and relating to the dynamics

described by Xenakis, Galanter writes,

“(...) in its purest form generative art using complex systems is

about the dynamics of complex systems. Complexism not only

rehabilitates formalism, it perhaps more importantly reintroduces

the artistic notion of dynamism. As originally introduced by the

Futurists, dynamism celebrated the aesthetic of the locomotive

and the racecar, and called for the exploration of motion and

process rather than portraying objects as being frozen in time.

Dynamism in complex art is the visceral appreciation of the beauty

of dynamics as more fully revealed in the context of complexity.

In a sense, formalism is to nouns as dynamism is to verbs. With

its focus on complex generative systems, complex art encourages

artists to move from art objects to art processes, i.e., from nouns

to verbs.” (Galanter, 2008, p. 330)
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Chapter 2

Evolutionary Computation

One could say that a man can “inject” an idea into the machine,

and that it will respond to a certain extent and then drop into

quiescence, like a piano string struck by a hammer.

Alan Turing

Computing Machinery and Intelligence

As described in the previous chapter, biology can form a rich and often

complex source of inspiration for computational models. Be it for artistic

ends or not. Where the field of bioinformatics actually applies computational

techniques to problems in biology, evolutionary computation concerns itself

with models of a biological nature. These models in general have search,

learning or optimization characteristics. A question on the use of such models

within music composition might be: What music composition tasks could

benefit from search, learning or optimization techniques?

Evolutionary algorithms are used in many real world applications in fields

such as, electrical engineering, computer graphics or finance. As we will see

later on, evolution also has a rich, but short history in the arts.

I will discuss genetic algorithms and genetic programming. As well as

the workings of the fitness function, genetic representation and the concept

of search space.
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2.1 What is computed evolution?

In popular science (fiction) writing there are many references to actions a

computer can’t (or for that matter, can) perform. A computer is not au-

tonomous—we tell it what to do. A computer doesn’t evolve—it is restricted

by it’s programming. And even more striking is the fact that they do not

reproduce. Evolutionary computation, or more in general the field of artificial

life, concerns itself with these kind of problems.

The ‘fathers’ of computing already wrote and lectured about the philo-

sophical problems relating to computing and biology. Philosophizing on the

creation of an artificial intelligence, based on the mind of a ‘child’—not an

‘adult’, Alan Turing wrote,

“We cannot expect to find a good child machine at the first at-

tempt. One must experiment with teaching one such machine

and see how well it learns. One can then try another and see if it

is better or worse. There is an obvious connection between this

process and evolution, by the identifications

Structure of the child machine = hereditary material,

Changes of the child machine = mutation,

Natural selection = judgment of the experimenter

One may hope, however, that this process will be more expedi-

tious than evolution.” (Turing, 1950)

As we will see later, these are the basic components of the process of inter-

active evolution. Worth mentioning is also the work of John Von Neumann,

specifically his book “Theory of Self-Reproducing Automata” (1966) where

he lies the mathematical and logic fundamentals for ‘reproducing machines’.

Even earlier, in 1948, during his lecture at the Hixon Symposium, Von Neu-

mann theorizes about complex systems, automatons and their relations to

natural organisms.
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“Natural organisms are, as a rule, much more complicated and

subtle, and therefore much less well understood in detail, than

are artificial automata. Nevertheless, some regularities which we

observe in the organization of the former may be quite instruc-

tive in our thinking and planning of the latter; and conversely,

a good deal of our experiences and difficulties with our artificial

automata can be to some extent projected on our interpretations

of natural organisms.” (Jeffress, 1951)

The need for extensive work on artificial evolutionary systems, was clearly

in the air. In the 1960’s and 70’s the theoretical basis for evolutionary com-

putation was being formulated. Three techniques where developed by the

names of genetic algorithms (GA), evolution strategies (ES) and evolutionary

programming (EP). The common feature of all these techniques being the evo-

lution of a population of candidate solutions to a given problem. (Mitchell,

1996, p. 2) Ingo Rechenberg developed ES in his paper “Evolutionsstrategie:

Optimierung Technischer Systeme nach Prinzipien der Biologischen Evolu-

tion” (1973). EP can be seen as a forerunner of what is nowadays called

genetic programming (GP).

Evolutionary computation is in effect, a method of searching among an

enormous number of possibilities for solutions. Out of the search property,

overtime emerges a design property : novel solutions to problems.
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2.1.1 Genetic Algorithm

The genetic algorithm was invented during the 1960’s by John Holland. He

set out to study the biological phenomenon of adaptation as it occurs in

nature. In 1975 he presented his book “Adaptation in Natural and Artificial

Systems” (Holland, 1975).

The basic genetic algorithm contains the following steps:

1. Generate a population of n individuals with random l -bit chromosomes

2. Calculate the fitness of each chromosome x in the population

3. Repeat the following until n members of a new population have been

created;

(a) Select a pair of parent chromosomes (according to fitness)

(b) According to crossover probability perform crossover, which might

result in offspring

(c) Mutate the offspring according to mutation probability and place

it in the new population

4. Replace the current population with the new population

5. Go to step 2

The concept of a population consisting of individuals is quite straight-

forward to implement in an appropriate data-structure. Each individual is

genetically represented by it’s chromosome, which in classic GA is just a bit

string. The fitness (usually a real valued number) of each individual is calcu-

lated according to the fitness function. This fitness function encodes criteria

for the evaluation of potential solutions to the problem posed. The actual

core process of a GA is represented by selection, crossover (also called recom-

bination) and mutation. These operations are called the genetic operators.

Other operators like inversion are possible, if desired.

The selection of 2 parent chromosomes can occur by fitness value, where

higher fitness gives a higher chance for reproduction. There are other pos-

sibilities for the selection method. With a interactive GA, the user can be
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the selector and choose, on the basis of the phenotype, which individual

can reproduce. Similar to what biologists call viability selection is fitness-

proportionate selection, the actual aging of an individual before it becomes

viable for reproduction. The number of times an individual is expected to

reproduce, while computing for one generation, is equal to it’s fitness divided

by the average fitness of the population. Reproduction probability is ‘scaled’

with overall fitness.

Other selection methods include, sigma scaling, elitism or rank selection.

Which selection method to use according to the problem under investigation,

is still an open question. (Mitchell, 1996, p. 124)

The recombination of 2 chromosomes occurs at a random locus, a point

within the chromosome. According to a certain mutation probability, at a

random locus, genes are mutated via bit-wise inversion.

Of course there are many variations or tweaks to the basic process de-

scribed above. Many features and effects on performance have been debated.

2.1.2 Genetic Programming

Genetic programming (Koza, 1992) is a technique very similar, in its core

mechanism, to the genetic algorithm. The main difference being that opera-

tions are performed on ‘functional blocks of programming’. These functional

blocks (the bit string, in GA) are represented as a parse tree. Programming

languages like LISP form an excellent candidate for encoding these type of

algorithms.

Each node in the tree can either be a function or a terminal (a vari-

able). The set of functions or terminals used, should be representative of the

problem that’s being computed for.

Garcia (2001) has used GP and its search property in order to find ‘Sound

Synthesis Techniques’ that are similar to those of acoustic instruments. The

solution space (or search space) is a huge one. Given a certain sound synthesis

paradigm as well as a ‘target sound’, GP is utilized to approach this target

sound. The implementation of such a system requires a way of choosing

syntactically correct solutions. But also, the right synthesis technique (FM,
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additive-synthesis). Garcia proposes to create a ‘functional-form suggestion

mechanism.’

Figure 2.1: Parse tree (Garcia, 2001)

2.2 The fitness function

The fitness function deserves special attention. In popular belief survival of

the fittest is often interpreted as survival of the strongest, when in fact it is

survival of the most adapted. The fittest individual is the most adapted to

his environment. This function computes the requirements for the sought

after solution and implicitly encodes the adaptation and improvement that

all solutions will undergo.

Using GAs for optimization problems, the fitness function can become

quite trivial. If for example we wanted to search for a function which out-
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puts a certain value, we can test the genetic representation against this value.

Encoded in the genetic representation would be simple mathematical oper-

ators and random values. Which, when executed, will produce the sought

after value.

Applying a GA to the travelling salesman problem, the fitness function

needs to test for the length of the path each phenotype will ‘travel’. The

GA will be searching—among an enormous search space, depending on the

number of points to be visited—for the shortest path travelled where the

solution will visit each point only once, and come back to the starting point.

As we will see, when entering the musical domain problems soon come

to surface. Again, the evaluation of a static goal is trivial. Approaching a

certain melodic phrase is easy to test for. Several general categories of fitness

functions for musical utility are:

• Deterministic: there is a direct relation between the fitness func-

tion and the encoding in the genotype. Can also be seen as a pattern

matching scheme.

• Formalistic: here the focus is on the phenotype. The fitness function

will measure general ‘style’ rules and could be more concerned with

musical form.

• Computational-aesthetics: controversial, philosophical approach.

The difficulty being the formalization of aesthetics.

• Interactive: where the user determines the fitness of a certain pheno-

type.

Although computational aesthetic evaluation is a fuzzy and unsolved

problem, attempts have been made. Agent based systems, where actors

evaluate their peers and form judgments, have been constructed. I will dis-

cuss some examples in the next chapter. More dodgy solutions for aesthetic

evaluation include the use of connectionist models such as neural networks

or perceptual measures like, spectral analysis and complexity/order measure-

ments.
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An interactive fitness function asks the user of the system for an evalua-

tion of the phenotype. The obvious problem that presents itself here, is our

limited ability in evaluating large numbers of results. This is called the fit-

ness bottleneck. Such a bottleneck would be the case if a user would need to

evaluate every phenotype presented by the system. Such a system wouldn’t

be much better than purely random search, in the short run.

The fitness landscape is a means of visualizing the overall fitness of a

population. Each genotype of the population is ‘plotted’ on the horizontal

plane of the landscape, the x - and y-axis. Height, on the z -axis, is the

individual’s fitness. During the functioning of a GA, we can imagine the

continual evaluation of the fitness of each individual, actually moving the

individual around the landscape, until a largely stabilized landscape has been

formed.

Figure 2.2: Fitness landscape

2.3 The representation problem

In the previous section the artistic choices involved in the fitness function

became evident. Even more than the fitness function, the genetic represen-

tation relates directly to the complexity that can be displayed by a system.

In effect the type and complexity of the genetic representation is what defines

our ‘movement’ across the search space.
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In nature even the genetic representation, or encoding mechanism, is

subject to evolution. The genetic encoder/decoder is also encoded in our

genome. As an analogy; think of a computer program that is able to print

its own sourcecode.

There are at least four types of genetic representation, each with their

own complexification potential.

Fixed Parametric

Each phenotypic trait relates to a single gene, which can have binary

or multiple state values; encoding a limited parametric space.

Extensible Parametric

The variables of a phenotypic trait can be controlled in genes separate

from the genes encoding for enablement of the trait.

Direct Mechanical

The genome encodes ‘algorithms’ for the production of a variable trait.

More variation is present.

Reproductive Mechanical

Similar to DM, but with a reproductive capability. Genes can reproduce

themselves, so to speak. Completely new traits can evolve.

The last option will obviously be the most complex, and as such exhibiting

multiple levels of emergence where quite complex behavior could evolve. On

a practical level chromosomes will need to be structured in some sort of data

format. As we’ve seen this is in the most simple case just a bit string. A more

extensive data structure is needed for the last 3 types of encodings. Data

structures external to the actual genome could also be used, giving control

over what information is evolved.

2.4 The multi-dimensional search space

The set of all possible solutions to a function being performed, is called

the search space. This space, in the context of GAs, is typically a multi-

dimensional space representing all possible combinations of phenotypic traits.

21



The fitness function used in a GA is actually our navigational guide, in

navigating the search space. Imagine similar solutions being situated close

to each other, and for example, the genetic mutation-operator causing ‘jumps’

to other locations in space. The complexity of navigating the space is also

dependent on the genetic representation—complex representations can mean

complex spaces. Natural biological diversity is an example of this.

The notion of search space implies that a GA is a searching method. It

is important to note that this search property is not similar to for example,

searching the internet or looking up a telephone number. The information

to be found is not explicitly stored, but is created through mutation and

recombination as the algorithm searches. In somewhat of a stretch, a GA

can be likened to a so called parallel terraced scan. Each individual is seen

as an agent exploring the space for solutions, the higher the fitness the more

likely a certain direction (in the space) will be explored. The search is par-

allel because there are many agents exploring different directions. Not every

direction is explored with an equal amount of resources (again dependent on

the fitness). It is through the search space that the actual functioning of the

fine grained architecture of a GA can be seen.

2.4.1 The metaphoric search space

In work by Dahlstedt (2001), he describes the exploration of so called pa-

rameter spaces. Any sound synthesis model resides within its own usually

multi-dimensional parameter space. That of all possible unique combinations

of parameter settings. GAs, and more specific the interactive variant, are ex-

cellent tools for exploring these spaces as they can search in a very direct

way, for the unknown.

The step-wise nature of GAs can be a problem. For example in live

performance. The generation and exploration of ‘new sounds’, on the spot,

is an appealing thought to any electronic musician. In an attempt to make

navigating the parameter space a more fluent one, a metaphoric approach to

exploring is taken.
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“The user may like a specific variation of a mother sound, but

he cannot access the continuum between the parent and the off-

spring. Also, the evaluation process may not be suitable for the

audiences ears.” (Dahlstedt & Anders Nilsson, 2008, p. 479)

Dahlstedt and Nilsson propose a live performance system, where control

inputs (in their case velocity sensitive pressure pads) actually control the

exploration of parameter space. Each control input is mapped to a certain

vector in n-dimensional geometric space. Depending on the control input

this allows minute discovery of the space. Each vector follows the previous

one and so, the point of origin 0 is your starting (‘parent’) sound, the end

of the last vector, point S, is your sounding point (‘child’). S can be reset as

the new 0 during performance.

Figure 2.3: Parameter space (Dahlstedt & Ander Nilsson, 2008)

This is a technique clearly focussing on sound and gestural expression,

not ‘parameter fiddling’-on-stage.

23



Chapter 3

Applications and Problems in

Music

Few of us have bred pets or livestock, let alone experimented with

genetic engineering; many more of us have watched fish in a pond,

insects in the grass, birds in the trees.

Mitchell Whitelaw

Metacreation: Art and Artificial Life

In the previous two chapters I have discussed the technical and theoret-

ical overview of evolutionary computation, with some references to musical

applications. Here I will discuss concrete music composition examples that

utilize evolutionary computation techniques.

3.1 Evolutionary techniques in Music

The first know documented work of the use of a evolutionary technique in

music is that of Horner and Goldberg (1991). They set out to solve a clearly

defined problem, that of ‘thematic bridging’. The transformation of a initial

musical note pattern to a final pattern over a specified amount of time.

They implemented their work on a Kyma Workstation, where the GA was

implemented in Smalltalk. Around the time techniques like neural networks,

just started to be used in algorithmic composition. (Todd, 1989)
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Horner and Goldberg discovered the basics; the importance of the oper-

ator set, genetic encoding and the fitness function—in musical applications.

But also hinted at the possibility of future use of GA techniques in sound

synthesis. The musical parameters upon which the GA would operate are

pitch, amplitude and duration. They used a real valued, direct mechanical ge-

netic representation. Binary tournament selection and single-point crossover

(recombination) are used. Binary tournament selection selects the 2 fittest

individuals for reproduction, from a randomly selected sub-population.

In order to reach the goal of bridging two note sequences, they encoded

not the notes in the genome, but operations on those notes. In a ‘parallel

auxiliary structure’ the parameters to these operators are kept. The oper-

ators for performing transformations on the notes are: add, delete, rotate,

exchange, mutate and no-operation. Each operator was encoded in one gene.

The phenotype of an individual (to be executed from left to right) could look

like:

(Delete 5)(Rotate 1 forward)(Delete 4)(Mutate 1 3)(Rotate 1 forward)

A deterministic, double fitness measurement function is used. The first

part of the function calculates the degree to which the generated note pattern

matches the final, user defined pattern. The number of notes desired, their

ordering and the actual pitches are taken into account. The second part of

the function concerns itself with desired and the produced duration’s of the

notes.
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3.1.1 Musical Organisms

Figure 3.1: MOE

In “The Evolution of Musical Organisms” (Degazio, 1997), Degazio ex-

plains his work on a interactive evolution system for algorithmic music com-

position. An analogy can be drawn to the Biomorph system by Richard

Dawkins, where a user can evolve ‘stick figures’ through an interactive GA.

The genetic representation contains simple encodings like, the angle of branch-

ing, symmetry rules and depth of recursion.

As noted before, a system utilizing interactive fitness evaluation contains

the fitness bottleneck, the user has limited ability for phenotypic evaluation.

Depending on the goals of the user, this can be a problem. Careful slow eval-

uation of results in a compositional context has probably never hurt anyone.

Next to that, the Musical Organism Evolver also presents the user with a

visual aid, making it more convenient in practical use.
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Figure 3.2: Several Biomorphs

The implementation is based around the existing algorithmic composi-

tion software MIDIFORTH, consisting of functions able to operate on MIDI

information. He explains his Arbitrary Pattern Generator, where a pattern

can be generated to operate on various MIDI data types. All the parameters

of the generator are mapped in a ‘1-to-1’-fashion to the genome, which is a

fixed parametric representation.

He extends this functionality greatly by adopting somewhat of a GP ap-

proach where genes aren’t simple bit sequences, but represent higher level

data structures. These structures are comprised of 128 bytes that encode a

specific function from his MIDIFORTH system. The 128 bytes are structured

as follows,

1 byte: operation_code

1 byte: grouping_structure

126 bytes: operation-dependent parameter fields
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Each algorithmic composition function has a operation code and the

parameter fields will be populated with parameters specific to that function.

Depending on the algorithmic function, not all the bytes for parameter fields

are used. On the use of this extended system, on top of GA for note patterns

he writes,

“I believe that the imposition of this structure, above and beyond

the structure evolved by the genetic algorithm process, is essential

to the musical success of this project.” (Degazio, 1997, p. 31)

He also theorizes on the use of ‘application-specific’ fitness functions that

would enable automated fitness evaluation. For example, formalistic evalu-

ation based on ‘contrapuntally correct’ percentage of notes compared to a

cantus firmus.

3.1.2 Unconventional techniques

So far we have seen some elementary examples of the application of GA to

sound objects, notes or even phrases. An unconventional approach might be

taken on a lower level, with the application of GA to time-domain waveforms.

(Magnus, 2004)

Magnus defines a gene as a segment of a waveform between two zero

crossings. This directly shows the metaphorical approach to GA. The ‘life-

span’ of an individual is determined by the playback duration. A choice

which already will push the audible results in a certain direction. The fitness

of a waveform is determined by calculating its similarity towards a target

waveform. An error rate is calculated by summing the difference between the

desired and actual amplitude, of each instantaneous sound pressure value.

Her system selects the two highest ranking individuals from a population

and performs single-point crossover. There are several mutation operations

possible on the waveform segments (genes): reverse, remove, repeat and

swap. Amplitude based mutation is also possible: addition with a random

value, exponentiation and normalization.

There is also a ‘spatial environment’ defined, that she describes as:
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Figure 3.3: Waveform genome (Magnus, 2004)

“For a given piece, the world will be characterized by some num-

ber of locations. These locations may be mapped spatially onto

speakers. The environment at these locations will initially be

defined by some target waveform and some set of mutation prob-

abilities. Individuals within the population will have some prob-

ability of migration. In this way, sounds with new characteristics

will enter each location, enhancing biodiversity.” (Magnus, 2004,

p. 3)

This approach can be seen in a similar category as many of the sample-

based techniques used in contemporary computer music.

3.1.3 From musical interaction to audible traces

A more metaphorical approach of evolutionary and cybernetic mechanisms

to the construction of a site-specific sound installation can be found in Di

Scipio (2003). He theorizes on the subject of interaction, specifically that

of interactive signal processing. He takes a bio-cybernetic, or eco-systemic

perspective on the process of interaction for musical utility. Live electronic

music performance can be seen as a simple feedback loop involving; per-
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former, instrument and sound. He comments,

“In a broader perspective, in this standard approach, the sound-

generating system is not itself able to directly cause any change

or adjustment in the ‘external conditions set to its own process,

i.e. it has no active part in determining the control data needed

for its changes of internal state to take place. The only source of

dynamical behaviour lies in the perfomers ears and mind.”

Proposing a solution, through the use of the ecosystem concept (to be

discussed later on) he writes,

“(...) a shift from creating wanted sounds via interactive means,

towards creating wanted interactions having audible traces. In the

latter case, one designs, implements and maintains a network of

connected components whose emergent behaviour in sound one

calls music.”

In essence he proposes a sound installation with interactive properties,

emphasizing the interaction with the local ecosystem; the acoustic environ-

ment. Noise, or ambience, is a crucial element—it is the medium through

which the dynamical behavior of the system can exist.

The Audible Eco-Systemic Interface (AESI) is a system with the following

control flow, in a local acoustic environment:

1. Sound is played back from a computer, through loudspeakers.

2. Sound is fed back to the computer via microphones (crucial placement

in relation to the loudspeakers).

3. Analysis is performed on the microphone signals, relevant sonic features

are extracted.

4. Control signals are generated from the extracted analysis data. Signal

processing modules are controlled by these signals.

5. The processing modules operate on the original played back sound.
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6. A difference-signal is calculated from the microphone and original sig-

nals.

7. The difference signal (in effect, the acoustic room modes) is used to

adapt other signal processing parameters, over a variable time-span.

These functional properties will be familiar to the person interested in

site-specific sound installations or the mechanisms and properties of acoustic

space. Art installations concerning themselves with sound and space have

long history in the usage of feedback mechanisms.

3.2 Towards virtual ecologies

A distinctive direction, utilizing evolutionary computation techniques, is that

of the ecosystem. The concept of a virtual ecosystem tries to provide a

solution for a problem such as the fitness bottleneck. Next to that there is

the potential for emergence on many levels.

Todd and Werner (1998) drawn an analogy between algorithmic music

systems and the creation of the monster by Victor Frankenstein. This could

be further expanded on and seen as an analogy between artificial life and

algorithmic music systems. One which especially holds merit in the context

of a virtual or artificial ecosystem.

They formulate a problem present in probably any algorithmic music

composition system as, the structure/novelty trade-off. In their words:

“Thus the trade-off: More structure and knowledge built into

the system means more reasonably structured musical output,

but also more predictable, unsurprising output; less structure

and knowledge in the system means more novel, unexpected out-

put, but also more unstructured musical chaff.” (Todd & Werner,

1998, p. 2)
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In their work they divide algorithmic composition techniques into three

categories:

• Formal rule-based

• Example learning

• Evolutionary (descent with modification)

Descent with modification of course refers to the reproductive capabil-

ities a evolutionary system can posses. In the discussion on evolutionary

techniques they propose a system of coevolution where artificial composers

as well as critics are evolved, in order to produce musical material. According

to them; evolution might lead to beauty or, monstrous creations.

On the question of what type of fitness function or, testing criteria to use,

they return to the three techniques listed above, adding interactive testing.

Coevolution can metaphorically be viewed as the exchange of information

between a music creator and music critic;

“In the same way, the two halves of the creative loop, creator

and critic, or performer and audience, should dance around each

other, shaping and being shaped by the others behavior. This is

a very general principle–essentially that of a feedback loop–that

lies at the heart of a wide range of dynamic systems, whether

within the psychology of a single creative mind, or between a

pair of interacting individuals, or among the groups generating

and responding to artifacts in a particular culture, or even among

species interacting in an ecosystem. If only one side of any of

these systems can change, then it will only change until it is

in line with the other fixed component, and then creativity and

innovation will stop. Both sides must be free to adapt to the

other for continuing novelty to be generated.” (Todd & Werner,

1998, p. 14)

Through coevolution, selective pressures are exchanged between the cre-

ator and the critic. Coevolution can,
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• reduce trickery on the part of the creators, in order to achieve high

fitness (new fitness criteria will continuously evolve)

• produce synchronic diversity, through speciation (sexual selection

will generate rich variation)

• generate diachronic diversity, through arms races between species

(traits change in response to adaptation)

Summarized to:

“Thus, to generate musical diversity both across time and at any

given instant–both diachronically and synchronically–we must

build a system that can create a multitude of distinctly defined

‘species’ within one population, and that can further induce those

species to move around in musical space from one generation to

the next. Sexual selection through mate choice allows the former,

leading a population to cluster into sub-populations with unique

(musical) traits and preferences.” (Todd & Werner, 1998, p. 15)

No doubt, this will be a highly complex system to construct. An ex-

planation of their actual implementation is given in the paper referred to

above.

Their coevolutionary model was inspired by evolution of birdsong, where

critical females choose which singing males to mate with. In the end their

goal of musical diversity and novelty was reached, but at the cost of ‘musical

structure’. They finally conclude with,

“Musicians intent on creating algorithmic composition systems

with the spark of human creativity would do well to adopt this

combination of coevolution, learning, and rule-following, and thereby

with luck avoid the horrors that were visited upon Victor Franken-

stein and his creation.” (Todd & Werner, 1998, p. 21)

And so it seems the task of constructing, a eco-systemic evolutionary al-

gorithmic music composition system, is not a easy one.
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3.2.1 Artificial Life for Music

A similar agent-based system to the one described above, was created by

Dahlstedt and Nordahl (2001). The departure point is their statement that

interactive evolution, although being a optimization technique, inherently

emphasizes the creative nature of evolution.

A similar point is made by Goldberg (1994), on the relation of innovation

and creativity to the functioning of GAs.

“What is it we are doing when we are being innovative or creative?

Often we take a set of solution features that worked well in one

context and a set of solution of features that worked well in a

different context and bring them together—possibly for the first

time— to try to solve the problem at hand.

This emphasis and juxtaposition of human creativity is similar to

the selection and recombination of genetic algorithms. Of course,

the willy-nilly juxtaposition of GAs seems much less directed than

that of our own creative efforts, or so we would like to believe;

nonetheless, the alignment of the fundamental processes in the

two situations is appealing (...)” (Goldberg, 1994, p. 4)

The system constructed for Living Melodies, is an artificial world inhab-

ited by coevolving creatures that produce sounds, and judge each others

sounds. The vocalization of the creatures is inspired by the mechanisms of

animal mating calls. A few important properties of the system follow.

• Two part genome: sound and procedural, both variable in length. The

sound genome contains notes, ordered by decreasing listening plea-

sure for the individual. The procedural genome contains movement

or sing/listen actions.

• The world is a square lattice, with or without boundaries. Also the

‘air’ (for sound propagation) is modelled. The current sound (note),

amplitude and direction for each discrete cell is modelled.
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• There can be food for the creatures to consume. If consumed, their

life-points (energy) increase.

• The creatures have life-points, decreased by time, mating or singing.

• Creatures can reproduce if they are near each other, their life-points are

high enough and their listening pleasure has reached a certain value.

A child is spawned within a few cells of the parents, and one of the

parents is displaced a few cells, to prevent successive mating attempts.

• A creature has 3 sensorial inputs that can be used in the procedural

genome. Notes of neighboring creatures in several directions, sound

volume at the current coordinates or age of the creature, are some of

the sensor values that can be detected.

Deduced from these properties can be the fact that there are numerous

parameters that control the dynamics of this system. One important param-

eter concerns the filtering on the vocalization of the creatures. Filtering can

be done according to listening pleasure or life-points values, each resulting in

different musical results. Filtering according to listening pleasure only vocal-

izes the ‘happiest’ individuals, whereas life-points filtering is a more steady

filtering method.

Their work is concluded in an relativistic and optimistic fashion,

“In this world, the main feature we emphasize is not so much that

the individual creatures develop interesting sounds, but that of

listening to the process of evolution of simple creatures working

together, triggering each other and playing a small part each. The

process is more like creating a singing ant colony than trying to

create a Pavarotti ant (that will be our next project).” (Dahlstedt

& Nordahl, 2001, p. 247)
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Figure 3.4: Sonogram of Living Melodies (Dahlstedt & Nordahl, 2001)

3.3 Principles of Complex Adaptive Systems

In light of the virtual ecosystem concepts presented above, I will take one

final sidestep into complex adaptive systems theory. In “Hidden Order”,

Holland (1995) explores general principles of CAS. The principles are divided

into properties and mechanisms, and serve as description of phenomena that

can be encountered when studying CAS. Taking this as a departure point,

these phenomena could serve simulational realism—enabling many levels of

emergence—when constructing a virtual CAS.

Aggregation (property) of agents.

In the first sense, to simplify and understand the system. How an agent

is defined within the system, and what their common properties are. In

the second sense we are concerned with what the agents do, and what

this aggregate behavior leads to.

Tagging (mechanism) facilitates the formation of aggregates.

The ability to tag, or mark, objects (agents) in order to track their

behavior. This enables other agents to ‘select’, or simply distinguish.

Think of it as rudimentary information exchange.
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Non-linearity (property) of the aggregate behavior.

The interactions among agents cause aggregate behavior, that is not

explained by simply summing or averaging its constituent parts. Think

of the mathematics of chaotic systems, for example the logistic map.

Flows (property) of resources or information exchange.

A possible activity in a network, between nodes (agents). Think of sig-

nal flow between signal processing and generating elements in a sound

synthesis network. Two important properties of flows are the multiplier

effect and the recycling effect. Multiplication is the scaling of flows in

each consecutive node. As the name implies, often manifesting in an

increase of resources. The recycling effect considers ‘feedback loops of

flow’, where the resource in the flow is ‘under constant re-use’ at several

nodes before it ends at its natural end.

Diversity (property) of agents in a system as a cause for novelty.

Closely related are ecological concepts like, niche construction, mimicry

or symbiosis. All constructs which enable diversification of the environ-

ment. The continuous adaptation of agents leads to diversity; enabling

the adaptation of other agents (reacting to others, etc.). Diversity is a

dynamic pattern.

Internal models (mechanism) for anticipation.

Where anticipation within agents, affects behavior between agents.

Evolution rewards successful actions resulting from anticipation of con-

sequences. Possible consequences can be modelled. There are tacit and

overt internal models. The tacit model is taking a simple action, under

a implicit prediction (‘there is more energy in direct sunlight’), in or-

der to reach a desired future state. The overt model, explicitly explores

several possible outcomes of an action. Think of contemplating chess

moves.
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Building blocks (mechanism) of experiences in internal models.

Internal models can only be useful if the resulting anticipations conform

with the actual experienced result of an action. The experiences gained

can in turn be building blocks for other internal models, allowing adap-

tion to novel situations. Think of learning. Tacit building blocks are

usually combined and discovered on a evolutionary timescale. Overt

building blocks could change on a much shorter timescale.

These theoretic principles are one way to look at CAS. They are not the

way, as is often the case in theoretical science. I do believe that distilled

versions of these ideas can be powerful tools, enabling emergence, novelty

and in general interesting behavior for compositional practices.
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Chapter 4

Ecosystem approach and

conclusions

The previous chapter has described the possible implementation complexi-

ties involved in constructing a virtual ecosystem. The following chapter will

describe an experiment into creating a virtual ecosystem, in order to gain a

understanding of the software complexities involved. The software is written

in the SuperCollider scripting language, contained in three classes. There are

numerous parameters of the ecosystem that can be controlled. The function-

ality of the current system will be discussed. Some final remarks in relation

to the previous chapters will be made.

4.1 Creatures

Creatures is a simple ecosystem where individuals roam a virtual world. The

individuals are able to make sound. The world contains Food for the individ-

uals to consume and Speakers enable them to make sound. Each individual

contains its own unique genome. The genome can be translated into an audio

synthesis network. When individuals bump into each other, they are able to

mate and produce offspring.

When a World is started, a number of Individuals is spawned. The world

consists of a 2 dimensional lattice where at random locations a certain amount
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of food, and a certain amount of speakers are materialized. The world has

soft borders, individuals that bump into them are transported to the other

side.

The World is represented in the class World, the Individuals in the class

Individual. The genome to phenome conversion resides in the class

Gen2Graph, which is a modified version of GAGraphCreator2 (Stowell, 2006).

Genetic single point crossover functionality is provided by the RedGA library

(Olofsson, 2011). All software is distributed under the GNU General Public

License.

All sourcecode for the system and sound examples with an explanation

can be found at (Jöbses, 2011).

4.1.1 Simulation Functionality

The global functionality of the individuals is as follows.

• A Individual is spawned in a World. It is able to move one step, either

left/right or up/down. Moving costs life points.

• The Individual will have a certain amount of life points to begin with.

Life points can be increased by finding food. Mating will decrease the

life points.

• Each Individual has a variable length, real valued genome. This genome

contains a extensible parametric representation of audio synthesis units.

• When an Individual finds a Speaker, it is able to translate the genome

into an audible synthesis network. The volume of the Individual is

scaled to the individuals total life points.

• When two Individuals with sufficient life points mate, a single point

genetic crossover is performed on their genome. With a certain proba-

bility the parents will either die or be displaced. Before mating; parents

that are making sound, will be silenced.

The functionality of the World contains the following properties.
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• The World is created according to specified x and y values, representing

the dimensions. The specified number of Individuals is spawned at

random locations, avoiding food or speakers.

• Food and Speakers are distributed randomly trough out the world.

Each Speaker contains a certain rank; newbie, advanced or elite. Al-

lowing for different types of synthesis networks, when a Speaker is used.

• The World is run in cycles, of a pre-determined timestep, in which each

Individual’s standard check routine is performed.

• This routine is performed during the life cycle of an Individual.

– A new location, based on the current one, is generated.

– Boundary conditions for this new location are checked.

– The collision check is performed; the possibility of two individuals

bumping into each other.

– When the life points of the colliding individuals are high enough,

mating is allowed. Otherwise, life points are decreased because of

the collision—and the main routine is reset to the beginning.

– The two final checks are for Food or a Speaker on the new loca-

tion. If the Individual hasn’t already encountered a Speaker, it is

allowed to use it for making sound.

• At the end of each World cycle, dead Individuals (less than 0 life points)

are silenced and cleaned up.

4.1.2 Sound Functionality

The Gen2Graph class constructs a SuperCollider function that can be inter-

preted as a SynthDef. This synthesis definition describes the audio synthesis

network that originates from the Individuals genome. According to the rank

contained with the speaker, this class constructs a different type synthesis

network. Increasing in complexity, the ranks of newbie, advanced or elite

allow the usage of more advanced audio- and control-rate Unit Generators
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(UGens). At the elite level there are 59 different audio- and control-rate

UGens and mathematical or sequencing operations available for the Individ-

ual.

The conversion is completely deterministic; based on the genome and

rank, the same UGen graph is constructed. Due to the nature of the complete

process there is the possibility that a UGen graph will not make any sound.

Based on the number of genes in the genome, the number of UGens or other

operations used, will vary. All interconnections are mono with a range of -

1.0/+1.0, with the possibility of branching the output of one UGen or, other

operation, to several others.

According to the skeleton definition of the UGens (which input requires,

what type of, possibly scaled, input signal) the conversion constructs a com-

plex UGen graph. This final graph is preceded by a default number of ‘input

UGens’, that provide input to the genetically constructed synthesis network.

This complete conversion procedure allows for a large number of different

synthesis networks and so, audible results. As there is no ‘intelligence’ in the

procedure for what types of interconnections have proven audible results or,

a certain audible ‘paradigm’—this intelligence is needed elsewhere, and as

such provided in a limited way with the possibility of Individuals mating.

4.2 Conclusions

Provided is a broad overview on the usage of evolutionary biological and

complex systems concepts in music. The question whether music composi-

tion could benefit from search, learning or optimization methods—has been

answered by some of the examples in the third chapter. As music is strongly

related to discovery, search techniques could definitely benefit the composer.

Machine learning is a complex subject, maybe unnecessary complexifying the

already intricate concept of a virtual ecosystem with coevolving entities. As

we have seen, optimization techniques merely enable style imitation.

I am convinced that there is still a lot to be discovered in the application

of evolutionary and complex system concepts to musical composition.

The most appropriate warning being that of too much complexity. Drown-
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ing in extra-musical systems during implementation serves no goal, except

that of personal experience. Extensive research and design is needed before

attempting to construct such systems. There probably is a whole body of

scientific work that could aid in a less painful way of constructing virtual

ecosystems. Even if this is true, one of the fundamental problems of, at

least computer, music remains. The problem of mapping extra-musical con-

structs to musical events, objects or gestures—or, even harder, the mapping

to abstract sonic properties and events.

We have seen that analogies and a metaphoric approach to the concepts

provided in the first two chapters, can mitigate or solve, among others, the

problem of mapping. On the matter of analogies and metaphors, I want to

leave you with one final lengthy quote summarizing many of the concepts

already touched upon.

“When we appraise great art, music, architecture, literature, or

other human outputs that are commonly associated with the term

“creativity,” some features that commonly distinguish great from

not-so-great work are the number, quality, and type of intercon-

nections that the work makes with other works and other aspects

of life. For example, we look at a piece of art or literature for what

it represents (the direct connections it makes with the object or

situation it portrays), for its allusions (the direct interconnec-

tions it makes to other works of art or literature), and for its

symbolism (the meaning we infer by analogy through conceptu-

ally constructing interrelations between the work of art and some

situation not directly represented in the work).

In things creative, analogy transfers a set of fit features to the sub-

ject work, thereby infusing it with a well-adapted richness, a com-

plexity that would have been difficult to obtain by other means.

In genetic algorithms a method of analogizing or metaphoric trans-

fer would enable deep, difficult building blocks to be transferred

from a well-understood situation to a poorly understood situation

without the cost of explicit search.” (Goldberg, 1994, p. 4-5)
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