
FIRST REFLECTIONS ON MY 
COMPOSITIONAL PROCESS

Casper Schipper 2009

First Reflections
 1



FIRST REFLECTIONS ON MY 
COMPOSITIONAL PROCESS

Bachelor Thesis Sonology, 2009

       
Preface:

Considering that this is my fourth year at Sonology, time has been going very fast. Although 
a lot of progress has been made since my first pieces, I still feel I’m only at the start of 
something bigger. Now comes the time though to stand still for a moment and reflect on 
the past years. I must admit that I was not really trembling with joy having to write about 
my music, my feeling was (and still is) that the process that creates my music does not lend 
itself well to be written down in a linear way. I also noticed during the writing of this thesis 
that ideas that work very well in music, can sometimes appear naïve or simple on paper and 
vice versa. However, I think I still learned a lot of new things during the making of this The-
sis.

Apart from my own pieces, I’ve mainly focussed on the work of Koenig, who obviously 
doesn’t seem to have any trouble at all with writing about his music. His writings have been 
incredible helpful in reflecting on my own work. Because my latest works have been focuss-
ing more and more on the idea of algorithmic composition with the help of software I’ve 
developed myself, this thesis will focus especially on his two composition programs: Project 
1 and Project 2.

This thesis will consist of three more or less separate parts: first of all I will give a descrip-
tion of a selection of my compositions until last year. Then (after a short reflection on what 
role algorithms play in my music) I will present an explanation and reaction on the two Pro-
ject of Koenig and finally a explanation of my own software.

I would especially like to thank Kees Tazelaar and Paul Berg for their help and the fact that 
discussions with them have always been fruitful. I would also like to thank Patrick van 
Deursen for his inspiring lessons on  classical music (Beethoven and Ligeti in particular). 
Further (and I’m probably forgetting a lot of people) : Gottfried Michael Koenig, Wim 
‘Wimster’ Boogman, Cort Lippe, Billy Bultheel, Greg Grigoropoulos, Sophocles Arvanitis, 
Raviv Ganchrow,  Joel Ryan,  Rosalie Hirsh, Johan van Kreij, Babis Giannakopoulos, Peter 
Pabon, Richard Barrett, Paul Jeukendrup, Wouter Snoei, Emmanuel Flores Elias, Ji Youn 
Kang and all other people at Sonology that make it such a special and pleasant place to be.

First Reflections
 2



Part 1 :
 6

my works until 2008
 6
Quite Analog
 7

Influence of Koenigʼs Terminus:
 7

Working process of my own piece:
 9

Reflective Surfaces
 11

Fuzzy glissandi
 11

The Sequencer Patch
 13

Reflection:
 14

Jimmy
 15

Feedback for (a wet) bass-drum.
 16

Analogue Repetition
 18

BEA5 Max Sequencer
 18

My Max Version:
 19

The event parameters:
 19

Table Creation:
 19

Parameters for ordering the events:
 20

Modulations of parameters:
 20

First Reflections
 3



BEA5 Patch
 21

PART II : Algorithmic Composition
 22
On Algorithmic Composition
 23

A little History:
 27

Hiller and Isaacson:
 27

Xenakisʼ SMP software
 28

PROJECT 1
 30

History:
 30

Parameters:
 31

Compositional Rules (Order in parameters):
 32

Project 2:
 36

The list-table-ensemble principle:
 37

Selection principles:
 38

Harmony:
 41

Final construction of the score:
 42

Hierarchy:
 42

Combination/Union:
 43

Total Duration:
 44

Summarize:
 44

PART III:
 46

My Python Composition Tools
 46
LOWEST LEVEL
 49

The Note:
 49

First Reflections
 4



The Group:
 50

Frequency creation:
 50

Methods for creating entry delays:
 52

Special Group Methods
 54

Modulations.
 55

ListPointer
 56

Under Development:
 60

Vertical Density or 'chords':
 60

lPointer control through tendency masks:
 60

Horizontal Density:
 61

lPointer shuffle:
 61

Time Trees: A different approach to connecting layers
 62

APPENDIX...
 69
Considerations in choosing Python:
 69

Work on Sternenrest
 70

Experiences making the Bilthoven course.
 75

First Reflections
 5



Part 1 :
my works until 2008

First Reflections
 6



Q U I T E  A N A L O G

Influence of Koenigʼs Terminus:

One of the goals for Koenig in the creation of Terminus was to ‘reduce handcraft’. He did not 
totally dispensed with it though, because he was convinced that it was not possible yet to get the 
amount of articulation and control over time structure. The basic material of the piece is a mix-
ture of glissandi between 331 and 1062 Hz. The dynamics of the frequency is constrained be-

tween 1/4 and 4 octaves. The amplitude is modulated with 3 frequency’s 1/3, 1 and 4 Hz.
This results in a material having certain characteristics: 
- A certain bandwidth
- An average frequency
- Average inner speed of the glissandi

- A ‘spectrum’ containing 5 (moving) sinewaves.
He then used 7 different transformations to make variations on this source material.
Each has a different influence on the three basic characteristics:

Name effects on:

Bandwidth Avg. Freq. Inner speed Spectrum

Transposition X - X -

Filtering X X not really X

Reverberation - - - -

Ringmodulation X X - X

Zerhackung (a) - - - adds clicks

Editing&permutation 
(b)

depends depends depends depends

Synchronization (c) depends depends depends depends

a) Zerhackung is the multiplication of the sound with something what might best be described as 
a binary mask, thus creating a very rhythmic effect. It is achieved by recording onto a tape that 
has pieces of white-tape in it.
b) Editing and permutation means slicing the tape in pieces and reordering them.

First Reflections
 7



c) Synchronization is the mixing together of separate layers.

Form:
“die Formkonstruktion von Terminus 1 beruht auf der Tatsache, daß Transformationen des 
Klangmaterials das seinerseits bereits aus Trnasformationen besteht, sich vom Ausgangsmaterial 
stets weiter entfernen” (Koenig, 1971 Äst. Prax. p 103)

english: “The form of  Terminus 1 is based on the fact that transformations of the sound material 
which are themselves already transformations become less and less related to the original source 
material.” 
Thus the process of making the material is also used as an inspiration to construct the large form.

Image (8.1): The family tree of the material of Terminus, the numbers indicate the order in which the 
material is used in the final piece
The idea of transformations being transformed, formed the basis of my own piece. Instead of us-
ing all kind of different transformations, for the first generations I used only one: ringmodula-
tion.

First Reflections
 8



Spectra of the mother material

Working process of my own piece:

Apart from the editing, this piece was made completely in BEA5. The mother material was a 
simple dynamic sine-wave texture (no glissando’s, but dynamic in amplitude) being ring modu-
lated with itself recursively. 
The patch contained 4 oscillators with random envelopes applied over the outputs. A new ran-

dom frequency is triggered every time an envelope starts. This texture is then ring modulated 
with a previously recorded output.

As the image shows, after just a few recursive ring modulations the spectral aspect of the  mate-
rial doesn’t change that much anymore. This is because the material becomes noisier every time 

it is ring modulated, and noise is (spectrally speaking) not very sensitive to ring modulation.
This is also why I started with experimenting different ranges on the oscillators, when they 
where switched to a very low frequency range (1-10 Hz), I could increase the rhythmic aspect of 
the sound.  
I also experimented with using other basic material (squarewaves,VOSIM,filtered noise), while 

still using the sine-waves for the ring-modulation. It turns out that these materials even sooner 

First Reflections
 9



run towards a state were it doesn’t change that much any more every generation, still they pro-

vided possibilities to make contrasts in the final piece.

Some of the sounds were then put through a series of filtering, enveloping, and spatialisation 
patches. The final form of the piece was made partly intuitively, although sections of it are based 
on vertical travels through the ‘family tree’, thus starting with simple material developing to-

wards complexity and through the other patches towards sparseness.

First Reflections
 10



R E F L E C T I V E  S U R F A C E S

This piece was composed at the end of my second year. All sound material was created using 
Max/MSP. Although the complete process of the piece was not thoroughly documented there are 
still some important aspects I'd like to discuss here, because it influenced later pieces.

Fuzzy glissandi

Electronic glissandi have sometimes a tendency to sound unattractive, they (in my ears) sound a 
bit old fashioned or rather boring, especially when used on simple waveforms. It is something 
similar to the phenomena that LFO frequency modulation and theremin sounds can call up asso-
ciations with 1950’s science fiction movies. Still, I had the desire to try and connect sound events 
together (make a continues sound instead of separate events). And I started searching for ways to 

continuously change from one frequency to the next. 
The first step in improving the sound of the glissandi was by smoothing the transition curve. In-
stead of a straight line between two points, I used a sigmoid, which has a nice curvy form. It 
changes slowly at the beginning and the end, and fastest in the middle.

First Reflections 11

Time

Fr
eq

ue
nc

y



 This means that the onset and end of the glissando becomes much more subtle.

A lot of natural switching patterns in nature can be approximated with sigmoid curves and they 
are frequently used in neural nets.
A more important change was that I added FM-modulation at the point where the glissandi is lo-
cated. The modulation depth was designed to have its maximum at the point where the speed of 
change is largest, hopefully masking the transition less typical.

In the end this results in a frequency that has a stable stage, becomes fuzzy, and suddenly be-
comes stable at a different frequency. It becomes a sort of theme in the final piece.

First Reflections 12



The Sequencer Patch
This patch is in a way very similar to the common granular synthesis patches that everybody 

uses. I almost completely used it on a time level much larger then 10 ms grains though. 

It’s parameters included:
- Duration
- Wait

- Amplitude
- Transposition
- Panning (4 channels binary)
- Read point in buffer
- Buffer number 

- Envelope Shape

The parameters duration,wait,amplitude,transposition,panning and read point, where all con-
trolled by histograms drawn by the user. 
The panning was binary, with that I mean that there is no attempt to place sounds between speak-
ers, it is either on a speaker or not. However it is possible for a sound to be played on two,three 
or four speakers simultaneously.

While I was using the software I discovered that it is much more interesting to make very spiky 
graphs for controlling the parameters then continuous ones. Which means that only certain val-
ues where selected, instead of ranges. 

First Reflections
 13



Another way I tried to make contrast with the randomness of time it created was by repeating 

certain ‘grains’. There was again a histogram to control the chance that an event might be re-
peated.

Reflection:

I was quite satisfied with this piece, although I did make a shorter edit later (it had a bit of a long  

exposition that didn’t really have a function). And although the histograms are quite primitive, 
they still allowed for quite different and expressive results. 
There were however some problems with the phrasing of the music on the ‘phrase time level’ 
(let’s say 1 to 10 seconds): it had a taste of carelessness. This is especially apparent at the end, 
where I couldn’t really cut the material at a satisfying point, it just ends somewhere. The repeti-

tion parameter in the sequencer patch did help a little bit to solve this problem though, because it 
allowed to give a sequence a direction from uncorrelated events to something that had  lots of 
repetitions in it. Repetition as an introducer of order and periodicity (to use the Koenig term) is 
something I explored in following pieces more deeply.  
Another thing that maybe did not have such a clear place in the piece was the filtered sections, 

that gave a nice feeling of a space, without having a reverb taste to it. 
Because the piece was sequenced using 4 groups of 4 channels it was easy to create a special 16 
channel version for the WFS-speaker system. This opened the piece quite up, and made it in my 
opinion easier to follow separate events. It also showed, at least to me, that stationary sources on 
WFS can be just as interesting as sounds that move.

First Reflections
 14



J I M M Y
“I've been imitated so well I've heard people copy my mistakes.”  

       Jimmy Hendrix (unknown date)

This piece was the result of a research into (digital) audio feedback. The idea came to me after 
Paul Jeukendrup explained in one of his lessons that in live amplification situations, it is always 
best to have as few microphones (this also goes for speakers, by the way...) as possible, because 

if all your microphones are at different locations picking up the same sound sources, they will all 
have different time delays in their picked up signal. All these different time delays will result in 
different feedback frequencies, making it very hard to kill the feedback by simple equalization. 
Normally in a ‘one microphone-one speaker’ situation you can kill the main feedback frequency 
by filtering it (you will never totally get rid of it though because the resonances also take place at  

the harmonics). With many microphones the resonances become so dense that it is almost impos-
sible to kill the feedback. I was fascinated by the idea though, because it sounds like the resulting 
feedback must be quite interesting and rich. I also wondered what would happen if you would 
move the microphones, would the system find different equilibria ? How would it switch from 
one state to the other ? Could the simple situation give rise to higher level sound structures ? 

I decided to try and imitate the ‘many microphones situation’ in a Max/MSP patch. The original 
idea was to have a couple of virtual strings (Karplus-Strong like in nature) and have all off these 
connected to each other through delay lines (simulating the distance between them). The length 
of the delay lines was also modulated. Every ‘string’ had 7 outputs which connected it to the 

other strings. The amount of sound going to the other strings was controlled by random enve-
lopes. So, it was not that all the ‘strings’ were fed to each other all the time. A separate patch al-
lowed me to adjust the limits for the random envelopes. Between the output and the input was 
some switching mechanism that could act as a very extreme noise gate (0 ms attack, 0 ms re-
lease). For every string there was the option the ring modulate the output.

The final patch was creating very rich and diverse sounds ranging from soft violin like sounds to 
ear splitting distortion. True to it’s inspiration it was not very controllable, and it was difficult to 
predict what kind of sounds would result from a certain setting. If envelopes where long the sys-
tem had interesting dynamic changes.

First Reflections
 15



In the end a lot of separate material was created, and some of it cut up by the sequencer patch 

used for reflective surfaces. To create some developments in density material was recorded in 3 
or 4 different versions. The density was increased every recording. By crossfading them from 
one to the other this gave a quite convincing continuous development from low density to high 
density. Of course I could have also automated this, but because of the instability of the patch 
this was a more practical solution.

F E E D B A C K  F O R  ( A  W E T )  B A S S - D R U M .

This piece was made during the 2-week installation workshop by Bennett. The original idea is 
closely related to the the Jimmy piece. It also deals with resonances. The goal was to use the 
resonances in the bass-drum itself to create an interesting sound structure. 
The setup consisted of a (rather old) bass-drum, a microphone, a laptop running a Max/MSP 
patch and a small speaker located inside the bass-drum.

The first step in the creation process was measurement, I used a very slow sine-wave sweep and 
recorded it. I wrote down the resonances. The bass-drum had something like 11 clear resonances. 

The second step was to design a Max patch that would keep the bass-drum in a constant state of 

feedback without going to much in distortion. My goal was to make the patch in such a way that 
the feedback did not just occur at the most obvious frequencies (lower resonances in the case of a 
bass-drum, but also at frequencies located at less obvious harmonics. 

In the end the patch is very similar to a multi-band compressor. The sound coming from the mi-

crophone is filtered into bands (based on the measured resonances), and for each band the gain is 
determent. If the gain within a band gets above a certain threshold level, the gain for that band is 
reduced. Later I also added a sort of panic emergency valve, that turned the gain completely to 0. 

Later I experimented with making the curve of the compressor hand drawn, this meant that I 

could make unconventional gain reactions, where the system would actually increase the gain of 
a band when it became softer, leading it to bounce back and become louder, only to be reduced 
etc... etc...

First Reflections
 16



This gave the system a certain kind of instability that I found very appealing. Although it still 

appeared to stay in certain cycles gain wise (softer, louder, softer louder etc).
For the exhibition, I let the system run through different settings.

Reflection:
I think the whole setup was in general quite successful, especially because of the visual aspect 

with the chladni water patterns on top. I must say that I do regret the limited time that was avail-
able, I feel I was still discovering new things when I was working the last day. Also the ‘going 
through a list of settings’ approach, although effective, but certain settings could have done with 
much less time, while others where interesting enough to run for maybe even a few minutes.

A short video registration of this piece is available on youtube:
http://www.youtube.com/watch?v=uMWYm1fbh4k&feature=channel_page

First Reflections
 17

http://www.youtube.com/watch?v=uMWYm1fbh4k&feature=channel_page
http://www.youtube.com/watch?v=uMWYm1fbh4k&feature=channel_page


A N A L O G  R E P E T I T I O N  

BEA5 Max Sequencer

This piece was made as part of the MIDI to Voltage Control (from now on referred to as MIDI-

to-VC) workshop of Kees Tazelaar. The MIDI-to-VC device allows you to control the analog 
equipment of BEA5 with software through MIDI.  One important aspect of the assignment was 
that whatever the software did, it had to be something that would not be easy to do with the 
equipment in BEA5 itself.

My initial goal was to make a patch in Max that would be similar to the VT-VFG, a 12 step se-
quencer already present in the studio, but would extend the possibilities. The VT-VFG in BEA5 
is a device that allows for 12 times 8 (+ 1) parameters to be hand set. The 9th parameter can also 
be used to set the time between steps.

Some other features of the VT-VFG:
- the 12 steps can be played in three types of order:
 normal, reverse, random.
- the amount of steps can be set between 1-12 (knob).
- there is the option to set the amount of repetition of this cycle between 0 - 255 or infinite 

(switches). 
- the sequence can be stopped or started at any point by sending triggers (knob or externally).

One of the interesting features is that the VT-VFG can be triggered so fast that the stepwise func-
tion reaches the audible range, thus allowing it to be used as a kind of wavetable oscillator.

The audible range aspect of the VT-VFG was not implementable in Max because of constraints 
on the MIDI protocol. Instead I focused on the 'slow' functionality.

First Reflections
 18



My Max Version:
Of course I wanted to add some unique functionality. One of the most important changes is in-
stead of limiting myself to the 12 steps of the hardware device, this is changed into a list of 100 
events. A separate part of the program then controls the way in which this list is read. 
Another limitation of the VT-VFG is that the parameters of 'amount of steps' and 'number of 

repetitions' are set by knobs and can't be dynamically changed. Instead of setting these parame-
ters by hand, I wanted this to be done by algorithms or stochastic processes. My ultimate goal 
was to extend the control of the composer to a slightly higher level. Instead of the control being 
limited to just the settings of parameters every step, I tried to deal with how these steps are then 
ordered in a dynamical way. 

The event parameters:
Parameters for every event included:
- 4x Frequency
- Amplitude 
- Entry-delay (this is the amount of time between the onset of events)

- Duration (expressed as a percentage of the entry-delay, it is always smaller then 100% in this 
version, because my BEA5 patch was monophonic.

Table Creation:
Entry-delays are a weighted choice from a set of 6 values (set by the user). The weights for the 
values are controllable by me through a sort of histogram. These weights, however, are normal-

ized according to their length. With this I mean that when given equal chance, the long durations 
are taking an equal amount of time when compared with the short durations. If the amount of oc-
currences would be equal, the long durations would completely overshadow the short ones. This 
however does give some difficulties when the difference in length between the shortest duration 
and the longest is very big, because in that case the chance for a long duration actually being 

chosen gets very small, and it is likely not to appear at all in the 100 events created. Values have 
to be chosen with care ! 
Limitation of possible values is very important for me because it allows better control over what 
possible rhythms. If for example the durations where just chosen from a range between 2 values, 

First Reflections
 19



the pattern resulting would contain so much information that it becomes noise like, the structure 

is no longer perceived.

The frequency values where chosen in a slightly different way. The frequency parameter is bro-
ken up in octave and pitch from a scale. Of course, I don't have fantasies about the accuracy of 
the voltage being concerted to exactly the pitch in my patch. However even without that accu-
racy, the splitting of frequency in Octave and Pitch on a scale is convenient because it allows to 
make some more subtle differences.

Parameters for ordering the events:

The events are then in another part of the patch ordered in what can be best described as a loop. 
The parameters of the loop are: start index, loop size, repetition of loop. All of these parameters 
are then controlled by weighted choices again provided by the user (i.e. the user draws histo-

grams). The creation of these loop parameters is real-time, so it is not first stored as a list. I also 
choose not to normalize the weights for loop size. This means that if there is a equal chance on 
long loops and short loops the long ones do take much more time than short ones, but that is just 
a feature I accept. In the beginning all parameters were always connected to each other.

Modulations of parameters:

While testing my early version of the patch, I very soon got the feeling that straight repetition of 
a sequence of events was not satisfying me enough, it was too machine like for me. So I built in 
an option to do modulation on the parameters. This modulation is not just random deviation, it is 
based on what stage the loop is in. All the parameters described earlier can be modulated by a 

certain ratio. At the beginning of a loop a new ratio value is chosen between two boundaries pro-
vided by the user. Because every time the loop is repeated the ratio gets multiplied with itself, the 
result is that the values change exponentially. When applied to durations or frequency, it gives 
the sound structures a feeling of curvature.

First Reflections
 20



BEA5 Patch
The analog patch itself was extremely basic: just 4 oscillators that go through two multipliers, 
one to control the amplitude and the other the envelope. The envelope is rectangular, but made 
slightly less harsh by using the rise decay filters.
Just to exaggerate the amplitude difference I sent the outputs of the oscillators through the har-

monic distortion, this meant that the loud events contained more harmonics then the soft ones. 
I also made some more experimental patches that instead of summing up the outputs of the oscil-
lators, multiplied them with each other (AM-modulation). 

Sequencing

All of the material used lots of transposition and different ways of combining. Sadly I can't go 
into much more detail then that, the original pro-tools session has been lost.

First Reflections
 21



PART II : Algorithmic Composition

First Reflections
 22



O N  A L G O R I T H M I C  C O M P O S I T I O N

Composing music with the help of algorithms is not something new, it has clearly been around in 
western-europe for centuries and probably much longer depending on your definitions. It is 
therefore useful to define what I think an algorithm actually is. Generally an algorithm is de-
scribed as a finite sequence of instructions that solves a given problem step-by-step. It is ex-
pected to always yield an answer or at least a close approximation in the case of calculations. 

The goal of an algorithm is breaking a complex problem (like calculating the orbit of the moon 
or finding the square root of 2) down in smaller and simple steps. A good algorithm should make 
the steps so simple that something quite stupid like a computer can even do it. 
However I would like to highlight some aspects of the concept further: first of all the concept of 
algorithm is not bound to computers or any other form of calculation machine. For example: if 

you want to divide 32264 by 537 by using long division, it does not matter for the algorithm if 
you use a calculator or do it with pen and paper or even with sticks and stones, when you are 
precise about the method, the result should still be the same (though one might be faster than the 
other). However it’s simplicity, does not mean that an algorithm is not able to yield results that 
were not expected by the user that applies it. 

To give the most obvious example of how powerful an algorithm can be I want to make a small 
sidestep to an algorithm that yielded complexity that is even more complex then music: evolu-
tion. In his book “Darwin’s dangerous idea” , philosopher Daniel Dennet tries to explain why the 
Darwinist explanation of biodiversity is so shocking: it actually implies that all complexity we 

find in nature is not here because of some design but fundamentally the result of an utterly mind-
less process which we could consider an algorithm. And since our capability to think is probably 
also a result of evolution, one might even argue that music is too, through many intermediate 
steps, the result of an algorithm: evolution. 
This is of course quite a reductionist claim, but what is wrong about reductionism ?

“The central image is of somebody claiming that one science “reduces” to another: that chemis-
try reduces to physics, that biology reduces to chemistry, that the social sciences reduce to biol-

First Reflections
 23



ogy for instance. The problem is that there are both bland readings and preposterous reading of 

any such claim. According to bland readings, it is possible (and desirable) to unify chemistry and 
physics, biology and chemistry, and, yes, even the social sciences and biology. After all, societies 
are composed of human beings, who as mammals, must fall under the principles of biology that 
cover all mammals. Mammals in turn are composed of molecules, which must obey the laws of 
chemistry which in turn must answer to the regularities of the underlying physics. No sane scien-

tist disputes this bland reading; the assembled Justices of the Supreme Court are as bound by the 
the law of gravity as is any avalanche, because they are, in the end, also a collection of physical 
objects. According to the preposterous readings, reductionists want to abandon the principles, 
theories, vocabulary, laws of the higher level sciences, in favor of the lower level terms. A reduc-
tionist dream, on such a preposterous reading might be to write a “A Comparison of Keats and 

Shelley from the Molecular Point of view” or “the Role of Oxygen Atoms in Supply-Side Eco-
nomics,” or “ Explaining the decisions of the Rehnquist Court in Terms of Entropy Fluctua-
tions.”. Probably nobody is a reductionist in the preposterous sense...” (Dennet, 1995, p81)

When I read this passage one composer (that I respect highly, I must add) immediately came to 

my mind: Xenakis. He often seemed to have flirted with the idea of reducing music to it’s axi-
oms.
“Starting from certain premises we should be able to construct the most gen- 
eral musical edifice in which the utterances of Bach, Beethoven, or Schönberg, 
for example, would be unique realizations of a gigantic virtuality, rendered 

possible by this axiomatic removal and reconstructions. Xenakis 1992, page 207 “

Before we can proceed and ask the question wether musical composition can be done by algo-
rithms, the first question to answer would be, what do we mean with composition ? In classical 

instrumental music one could say composition is the process of combining single notes into mo-
tives, build phrases, themes etc. all the way up to a large form. A good example of this idea is the 
book Fundamentals of Musical Composition (A. Schoenberg 1960). It describes an (almost) al-
gorithmic process for building up a 19th century style composition from small elements (motive, 
phrase, theme etc.) towards a larger form. His opinion of form seem very rationalist:

“The chief requirements for the creation of a comprehensible form are logic and coherence. The 
presentation, development and inter-connexion of ideas must be based on relationship.”

 however:

First Reflections
 24



“A composer does not, of course, add bit by bit, as a child does in building with wooden blocks. 

He conceives an entire composition as a spontaneous vision.”
 “... No beginner is capable of envisaging a composition in its entirety; hence he must 
proceed gradually, from the simple towards the more complex”. Schoenberg 1967, (p. 1-2)

In his method he tries to break the process down to it’s fundamentals as much as possible, so that 

almost no deep knowledge or experience is required. 
“ The standard textbook analogy notes that algorithms are recipes of sorts, designed to be fol-
lowed by novices cooks. A recipe book written for great chefs might include the phrase “Poach 
the fish in a suitable wine until almost done,” but an algorithm for the same process might begin, 
“Choose a white wine that says ‘dry’ on the label, take a corks-screw and open the bottle; pour 

an inch of wine in the bottom of a pan; turn the burner under the pan high....” (Dennet 
1995,p51).

However since we are dealing with electronic music, the process of composition extends itself 
from just creating a form from elements, to the creation and design of the sounds themselves. 

“In der frühen elektronischen musik legte man im Kölner Studio großen Wert auf die festellung 
daß nicht nur das Werk, sodern auch shon jeder Einzelklang "komponiert" werden müsse ; man 
verstand darunter eine arbeitersweise, mit der die Form des Werkes und die Form des klanges 
verküpft werden sollten... (p192 Äst. Praxis band 3). 

This change from note towards a sound structure is very important. The normal hierarchy (of 
notes, phrases, themes, parts etc...) mentioned before is challenged, because the sound structure 
is not bound to the lowest level. It’s duration can be much longer then a typical note, in a way 
you could even consider the whole piece of music as a single complexly modulated sound. 

This shows that electronic music always has to deal with the lowest level, because it has to create 
the music from it’s simplest part : the sound itself.

First Reflections
 25



So the question now becomes, why do we still want to do it, why do we want to teach the ma-
chine to produce music ?
Koenig states (Äst. Praxis 3 p.197) that the computer can be used for three purposes: 
1) For the composition of smaller parts or form elements

2) To experiment with a model of composition (a simplification) , that provides the composer 
with a blueprint that the composer has to work out in detail himself. 

3) For the composition of a single work, where the program more presents itself as a score gen-
erator than a solver of compositional problems. 

In the experience I had with my own software, aspects of all three of these strategies have turned 

up.

Maybe the most obvious reason I want to use software, is simply because the amount of calcula-
tion gets very large (especially when you’re going to use stochastic processes). This is also a re-
sult of that the composer now has to deal with very low level sound, an area where it’s interest-

ing to let the computer take over some of the work.

One last thing I want to note is that even though algorithms may be less intelligent then compos-
ers, they can still sometimes come up with things, the composer himself would never have come 
up otherwise. As the mathematician Stanislaw Ulam once put it:

“ When I was a boy I felt the role of rhyme in poetry was to compel one to find the unobvious be-
cause of the necessity of finding a word which rhymes. This forces novel associations and almost 
guarantees deviations from routine chains or trains of thought. It becomes paradoxically a sort 
of automatic mechanism of originality.” (Ulam 1976, p 180)

So, to summarize, I don’t expect my software to produce complete pieces, that is because the 
concepts and rules on a low level (the ones that my MacBook understands) do not translate very 
well to higher level problems I encounter. I use my software for what it’s good at, creating tex-
tures that are in itself relatively simple. The large form of my pieces are not generated by the 
software, but decided for by myself, because for now that’s much more efficient! However in 

making those decisions I always try to stay connected to the material. It is the most important 
inspiration for the form.

First Reflections
 26



A  L I T T L E  H I S T O R Y :

I will now proceed with a short description of the programs of Hiller & Isaacson (Illiac Suite), 
Xenakis (ST-algorithm) and then a more deep study of Project 1 and 2.

Hiller and Isaacson: 

Although experiments have been conducted before the work of Hiller and Isaacson, I would like 

to start there because their work stands out because what they have done has been influential on 
later work.  Several experiments using quite different strategies were combined in a piece called 
‘Iliac Suite’ for string quintet (finished in 1957). 
Experiment one & two were an implementation of strict counterpoint. The rules where taken 
from the famous 18th century book by Johann Joseph Fux: Gradus ad Parnassum. The algorithm 

consisted of 2 simple steps:

1. Generate a new random pitch
2. Check if the generated pitch is allowed by the rules.
- Yes : add pitch to sequence

- No : go back to step 1 (if this step happens to often the sequence is deleted and a new sequence 
is tried.

The rules consisted of things like:
- Melodic restrictions:

- range (within an octave)
- forbidden intervals
- after a large interval, following intervals should be smaller.
- etc.

- Five rules controlled the vertical intervals

- “Combined rules” constraining parallel motion and voice movement.
When you listen to the first two sections, the first thing I noticed is that it ‘fails’ when it comes to 
giving direction, it doesn’t seem to remember what it has played before. 
After this, Hiller and Isaacson implemented more contemporary musical idioms like chromati-
cism and serialist techniques in experiment 3.

First Reflections
 27



One must realize that the results from experiment 1,2 and 3 that are part of the Iliac suite, are ed-

ited outputs. Also dynamics and expression marks were added later by the composer. (Ariza, 
2005 p49).
The final Experiment Four had as a goal to find a technique more based on the possibilities of the 
computer then of trying to enslave the computer ‘external’ musical ideas. They decided that in-
stead of making a huge amount of complex rules, to try a more fundamental approach using 

Markov chains. Part 4 of the Iliac suite is the only part that is not a combination of outputs, al-
though tempo, meter and dynamic indications were added later by hand. I must say that I find 
this part the most effective.

Xenakisʼ SMP software
The algorithms that form this program are not new to Xenakis, he had used the stochastic ap-

proach before in Achorripsis (1957). The choice of stochastic algorithms is very likely a result 
from his dissatisfaction with serial techniques, in his 1966 article he said about it:
“... linear polyphony is destroyed by its own present complexity. One hears in reality only aggre-
gations of notes at various registers. The enormous complexity makes it impossible for the ear to 
follow tangles lines, and its macroscopic effect is that of an unreasoned and fortuitous dispersion 

of sounds throughout the entire frequency spectrum” (Xenakis, 1966, p. 11)

1 The work consists of a succession of sequences or movements each A  seconds 
long.

2 Definition of the mean density of the sounds during A

3 Composition Q of the orchestra (from r classes of timbres) during sequence A

4 Definition of the moment of occurrence of the sound N within the sequence A

5 Attribution to the above sound of an instrument belonging to orchestra Q.

6 Attribution of a pitch as a function of the instrument.

7 Attribution of a glissando speed if class r is characterized as a glissando

8 Attribution of a duration x to the sounds emitted

9 Attribution of dynamic forms to the sounds emitted

10 The same operations are begun again for each sound of the cluster N a

11 Recalculations of the same sort are made for the other sequences.

J. Harley (2004) but originally from Formalized Music, 1992)

First Reflections
 28



It might be interesting to compare this algorithm with Xenakis description of how he describes 8 

fundamental phases of a musical work:

1 initial conceptions

2 definition of the sonic entities

3 definitions of the transformations

4 microcomposition (choice and detailed fixing of the 

functional or stochastic relations of the elements of 2)

5 Sequential programming of 3 and 4 (the schema and pat-

tern of the work)

6 Implementation of calculations, verifications, feedbacks, 

and modifications of 5

7 Final symbolic result (traditional notation etc.)

8 Sonic realization (performance, playback, etc.)

J. Harley 2004, but originally from Formalized Music, 1992)
Apart from steps 1, 7 and 8 there seem to me a lot of similarities, that suggest that he wanted to 
generalize the compositional process to be reproduced as much as possible in the program. How-
ever it must be noted that in the final pieces made with this program, he often changed an added 
things in transcribing the date to the score. 

As has been noted by James Harley (2004 p 30) “... Atrées shows a concern for sonority and 
performance issues that go beyond the premise of the compositional algorithm. There are pas-
sages, such as the JW32 section of the third movement, where the sustained pitches are varied by 
the periodic intrusion of tremelo or flutter-tongue, or shifts between sul ponticello and sul tasto. 
The tradeoffs of timbral or dynamic shifts from one instrument to another creates a kind of hock-

eting dialogue as the spotlight of attention shifts back and forth. These passages were not pro-
grammed, but added by Xenakis in the process of transcribing and evaluating the computer 
data.”

First Reflections
 29



P R O J E C T  1  

Stockhausen:
    So serial thinking is something that's come into our consciousness and will be there forever: 
it's relativity and nothing else. It just says: Use all the components of any given number of ele-
ments, don't leave out individual elements, use them all with equal importance and try to find an 
equidistant scale so that certain steps are no larger than others. It's a spiritual and democratic 

attitude toward the world.” (Cott 1973, 101)

I put the quote from Stockhausen, because I think Project 1 has a very strong connection with 
serial thinking, however it also breaks or extends some of it’s ideas. The quote also points out the 
idealistic aspect of serialism.

History:

After an archeologist friend had suggested that the score of Essay looked to him like something 
generated by a computer, Koenig started following a programming course at Bonn University.  
(Genesis of form,Koenig, 1987, Interface vol. 16). In an interview with Curtis Roads, answering 

the question when he made his first musical software he replied:
“Von Anfang an. Im Programmierkursus wurden die praktischen Übungen gebieten entnommen, 
die nichts mit Musik zu tun hatten. Als ich erwähnte, ich würde gern einige Übungen auf musi-
kalischen Gebiet machen, war der Dozent damit sofort einverstanden. Ich begann mit kleinen 
Programmen für die Erstellung von Zwölftonreihen, für Akkordenfolgen und ähnliches. Nach 

mehreren Experimenten machte ich mich an ein größeres Komponierprogramm, das später Pro-
jekt 1 heißen sollte.”1 (Koenig, 1978, ästetische praxis)

The first version (finished around 1966) was only intended for his own experiments, because in 
his opinion the amount of control over data and compositional rules were too limited for other 

First Reflections
 30

1 English Translation: From the very beginning. In the programming course, the practical exercises were 
taken from areas that are not related to music. When I proposed that I would like to do some exercises 
dealing with musical issues , the lecturer immediately agreed. I started with small programs for the crea-
tion of twelve-tone rows and for chord sequences and the like. After several experiments, I wrote a larger 
program, that would later be called Project 1.



people to be interested. However, since then versions of Project 1 with more freedom have been 

written. The last version runs on Windows and has a graphical input window. 

Parameters:

The parameters for Project 1 are:
Instrument
Rhythm (through the concept of entry delay(*) )
Pitch

Register
Dynamics
* = Entry Delay is the amount of time between the start time of two events.

For the parameters instrument, entry delay, dynamics and tempo the composer fills in lists to 

give possible values. The program will then order these values, and form chords 

First Reflections
 31



The harmony is not constructed explicitly but is controlled by the specification of two three-tone 
groups. Each group is constructed from two intervals provided by the composer. These three-
tone-groups are then transposed 3 times in such a way that a complete 12 tone row is obtained.
If you pick typical intervals, you can hear these pitch patterns quite clearly. However the choice 
of intervals is restricted to combinations that allow the construction of a 12 tone row. Some com-

binations prohibit the construction of a 12 tone row, here, the the software may invert the order 
of the sequence to achieve the 12 tone row.

In Project 1, the parameters of an event are normally treated completely separate. This comes of 
course from serialist thinking, because it assumes that parameters should be as independent from 

each other. In the manual Koenig says about it:

 “With one exception, parameters are not interrelated; that is because serial theory’s point 
of departure is that every element of a parameter can be linked with every element of another 
parameter, at any rate in an average range of values.”

“...The serial axiom could thus be expanded into the statement: every well-formed sequence of 
one parameter will let itself be placed beside every well-formed sequence of another parameter 
in a constructive context: by complementing, supplementing, accentuating - at least ‘not hiding’ 
each other.”

Koenig, Project 1 HelpCollection.pdf p. 8

The one exception mentioned in the upper statement is the link between entry-delay and chord-
size. However we will see that in Project 2 Koenig, does seek ‘interaction’ in the selection of dif-
ferent parameters.

Compositional Rules (Order in parameters):

Something that keeps coming back in Koenig’s work and also in his writing, is the idea of perio-
dicity and aperiodicity. A sine wave is an example of a very regular or periodic source, white 
noise is on the other end of the spectrum. In Project 1 this contrast also plays a very important 

role.

First Reflections
 32



The program has 7 steps in constructing the order in parameters, ranging from complete aperiod-

icity to periodicity. Because he did not find a satisfying way of going smoothly from one to the 
other, there is an intermediate step that is a combination of the two processes.
For creating aperiodicity Koenig uses serial techniques. Periodicity is constructed using limited 
repetition.
the Aperiodic steps:

In step 1: there are no repetitions allowed for the whole sequence.
     example:
   4376521

	 7653124
 etc..

step 2: there are no repetitions allowed for part of the sequence.
    example:
	 1345 4672 7651 2574
	 7342 1532 2564 2137
step 3: there are no repetitions allowed for an even smaller part of the sequence.

 12 56 17 62 34
step 4: this is an intermediate step (see explanation below)

  the Periodic steps :
 step 5: repetition is very limited.

	 11 2 33 4 1 3 5 4 55 7 11 22 33 

step 6: the repetition is limited to a certain value.

	 1111 22 3333 666 55 33333 22 1 77 777
step 7: the repetition is decided for between 1 and a maximum.
	 3333 44 22 1 7777777 2222222222 333  111111111 44444 333 222 111

Note: the examples are not representative for the all the output of the program, because for each 
parameters the specific amount of repetition (or the size for the repetition prohibition) is speci-
fied by an internal formula. Also see section ##

Step 4 is actually the most interesting one, it is made up out of two elements: 

First Reflections
 33



 Set and Balance
Set and Balance are both combinations from series generated with step 3 and 5.  
- First it is randomly decided how much S series will be generated.
- For every S series it is then randomly decided wether it is an Aperiodic (probably step 3) or a 

Periodic (step 5) style series. 
- A size of the series is chosen randomly as well.
- Because it might be that either the Aperiodic series or the Periodic series dominate in number, a 

set Balance is created, which has exactly the same number of series as Set, but an inverse num-
ber Aperiodic and Periodic series. Then the series’ order are shuffled randomly. In the end when 

Set and Balance are combined, there are an equal amount of Periodic and Aperiodic series. The 
result has thus a dialectic character, a mostly periodic series is followed by an aperiodic se-
quence etc. This aspect sets it quite apart from the other steps, because it creates structures that 
are larger in scope.

S = Set  B = Balance
 P = Periodic(step 5) A = Aperiodic (step 3)
S 63(A) 
 
 
 
 
 
 
 
 B 55555(P) 
S 435(A) 644(A) 53(P) 
 
 
 
 
 B 66(P) 354(A) 555(P) 
S 46465(A) 3456 35(A) 663(P) 464(A) 543(A) 655(P) 3(A) 4656 (P)
B 4444(P) 33(P) 6(A) 5(A) 333(P) 451(A) 4444(P) 3333 (P)

The large form can be controlled through something called the branching table. In the branching 

table the composer can select per section which rule has to be used for each parameter.

As mentioned before: Koenig designed for every parameter a slightly different formula’s to cal-
culate the size of the repetition check in step 1 to 3 (or the minimum and maximum amount of 
repetition in step 5 to 7). He refers to them as compositional rules.

An example :
the amount of repetitions in EntryDelay series in step 5 is calculated by: 3/4 * number of 
values provided by composer.

First Reflections
 34



Koenig puts emphasis on the importance of interpreting the output of the score. He did not ex-

pect composers to accept the output literally. Durations for example are not specified at all by the 
program, it is a choice left to the composer himself. Also the dynamics, register parameters are 
explicitly kept symbolic, to allow for flexible transcription. In the manual Koenig suggests a 
method of working in which the composer has to interpret the data according to his original in-
tentions. Concerning how to interpret chords he says in the manual:

“Dodecaphony stood model for Project 1 inasmuch as it is based on three-tone groups which, 
together with their transpositions, form complete twelve-tone series. Twelve-tone series are how-
ever not played in retrograde or backwards, but merely transposed. Nor do any motifs or themes 
derive from twelve-tone series. On the other hand, the constant recurrence of the three-tone 
groups prescribed by the composer may supply the composer during 'interpretation' with mate-
rial for motivic combinations.” 

There are two things I find especially interesting about Project 1:
First of all I think for the limited amount of input data it is still able to create quite different re-
sults. I like that the most important parameter for the large form is based on periodicity, or how 
things are repeated or allowed to repeat. 
I also think a lot of it’s power comes from the freedom of interpretation of the output. It’s power 

is that it’s not too explicit in it’s output.
Finally I find step 4 of the order generation principles interesting because it is a first step toward 
a higher level control of generating order within groups of events. It is interesting how it uses 
chance, but at the same time manages to retain symmetry.
The control through the branching table puts the composer in a very different position, instead of 

being in control of single events, the composers controls the periodicity or aperiodicity, a concept 
that is closer to what the listener might experience. It seems that on that point Xenakis and Koe-
nig agree with each other (that high level characteristics are more important then low level ones) 
Even though the compositional strategy of the program is quite hard-wired, still a wide range of 
possibilities are possible.

First Reflections
 35



P R O J E C T  2 :
Immediately after Koenig had finished Project 1 and composed two pieces with it, he felt that 
there where some ‘peculiarities’ that he wanted to get rid of:

“first of all there was the program’s restriction to only a few parameters which - apart from the 
odd exception - were independent of one another. The values of each parameter therefore had to 
be distributed in time in such a way as to remain permeable for the other parameters; no pa-
rameter could bear the sole responsibility for the formal progression.”
...

“ In the second place, there was the pre-established formal progression. Although this catered for 
the linking of variants, the variants had to satisfy a criterion of completeness : since the range 
between irregular and more predictable events was divided into 7 steps, the overall form of a 
“project 1” piece invariably consisted of 7 sections, so as to permit each parameter to display 
itself once in each of its 7 guises”

[Koenig, Genesis of Form.p174].
Actually the last point maybe less relevant, because in the latest version of project 1, there is no 
longer a limitation on the amount of segments, and also the compositional rule (step 1-7) is open 
for the composer to influence.  

Because the manual of project 2 exists of 160 pages, I will not be able to give a complete over-
view of all the functionality of this program. I’ll try to focus on the basic structure and some spe-
cific details that will become relevant in explaining my own program later.

generally:

- The program is fed musical data such as possible instruments, durations, dynamics play meth-
ods etc..

- The composer provides the program with information about what methods to use to order and 
combine the data. (similar in function to the compositional rules in project 1, however imple-
mented in quite a different way)

First Reflections
 36



The list-table-ensemble principle:

Musical data is entered as a list. The list is constructed by the composer, there are no generation 
functions of any sort. The amount of values and the range are completely free (except hardware 
constrictions of course).

Let’s take a list containing durations as an example:

Position 1 2 3 4 5 6

Value 0.1 0.2 0.5 1 4 8

Then the user specifies a table that enables the user to form certain groups within the list, for ex-
ample:

index Index Numbers from List index Represented Durations:

1 1 2 3 4 5 6 1 0.1 0.2 0.5 1.0 4.0 8.0

2 1 4 5 2 0.1 1.0 4.0

3 1 1 2 6 3 0.1 0.1 0.2 8.0

4 1 2 3 4 0.1 0.2 0.5

5 4 5 6 5 1.0 4.0 8.0

(37.1)
group 1: complete list, group 2: certain values selected, group 3: a selection with repetitions etc...

The control over how the data will be used in the composition is of course much greater then it 
was in Project 1, where always all the values were available in every section. Also note that the 
first two steps (the generation of the list and forming of groups in the table) are made completely 

by the composer, and not with any aleatoric processes. It seems to me that Koenig wanted to 
limit the randomness.
The next step however is the formation of an ensemble, and here selection becomes more auto-
mated. The formation of an ensemble happens through the combination of 1 or more groups. The 
composer can use either ALEA, SERIES or specify himself with SEQUENCE. This may seem a 

First Reflections
 37



little double because if you look at the table(37.1),  the combination between group 4 and 5 is 

exactly equal to group 1. Actually, any combinations of groups, could have been constructed al-
ready in the table. The reason for the concept of the ensemble lies therefore elsewhere. First of 
all it allows for an automated selection from the groups (with the use of ALEA or SERIES). Sec-
ondly ensembles play a role in how the program constructs what Koenig calls ‘vertical density’ 
or Layers. I will explain this further in the topic combination/union.

The final score is constructed only from the data that is in the ensemble (so not directly from a 
table or list). For each of the parameters the composer must specify what selection/order princi-
ples he uses:

Selection principles:

ALEA:

a random choice between a and b without repetition check.
1 4 2 3 3 7 6 6 2 1 3 1 5 4 etc...

SERIES:

a random choice with repetition check. No element can be chosen again until all have been used, 
so early repetitions like in Project 1 are not implemented in Project 2. I think Koenig expected 

the composer to construct his own way of generating periodicity aperiodicity through the use of 
the table.

1 3 4 5 2 7 6      6 5 7 4 2 1 3     3 1 4 5 7 6 2 etc.

First Reflections
 38



RATIO:

a serial ‘weighted choice’ that works by selecting from a supply. For each element the user can 
specify the amount of times an element can be selected before it is ‘used up’. For example entries 
A B C with the weights 1 3 4 would stand for this:
supply:                     A B B B C C C C
possible outcomes:      B C A C C B B C

   C C B B A C C B
   B C B C B C C A
Note: if all weights are set to 1, its behavior is exactly the same as SERIES. 

GROUP:

Produces repetitions. The repetition is controlled through two parameters: what element, and the 
amount repetitions. 
The user decides for both wether these decisions are made by ALEA or SERIES.

An example where element is controlled by SERIES and size by ALEA:

1 1 1 4 4 3 3 3  3 5 7 7 7 7 7 6 2 2 2     4 4 4 2 2 1 3 3 5 6 6 6 6 7 7 7 etc.

First Reflections
 39



TENDENCY: 

Image from project 2 manual

Tendency allows for ALEA choices within changing boundaries. Masks are defined by specify-
ing the limits of sub-tendency’s.  Because the amount of total events and the size of the ensemble 
can differ per variant, all the values are expressed in percentages. It is important to note that 
these tendency’s are thus not used to select completely random between two boundaries, but ac-

tually guide a choice in an ensemble that is itself already a certain selection from the original list. 

SEQUENCE(abr. SEQ):

This enables the composer to make the choice by hand. Can only be used when the size of the 

input data is known precisely. This might not be the case if size is decided by ALEA or SERIES 

First Reflections
 40



Harmony:

Although the other parameters are all controlled through the list-table-ensemble method, har-
mony is an exception. It is notable that just as in Project 1, it gets a separate treatment. Harmony 
can be constructed in three ways:
- CHORD: 

the composer provides a table with chords (interval values should fall within an octave):  which 
will be sorted using a selection principle. If a chord contains a interval 0, it will not be trans-
posed.
- The order of the chords is decided through using either ALEA, SERIES or SEQUENCE.
- When a chord has been used, it is transposed (also through ALEA,SERIES or a row provided 

by the composer) and put back in the table. Of course when the order of the chords is decided 
for by SERIES, it will not be used again until all chords have had their turn. 

- ROW:
A row is provided by the composer himself. unlike CHORD, ROW Doesn’t control the chord 
size. 

A row must be specified by the composer, which will then be transposed according to ALEA or 
SERIES, chromatic or serial (using the notes within the row itself as the basis for transposition).
There is also an option to not transpose the row at all.

- INTERVAL:

The composer puts in a chord that will then be analyzed and turned into a transition matrix.
The transition matrix will represent what intervals are allowed or not. When the program is run, a 
endless row results from this method, for every entry point and chord note, it will select one of 
the allowed intervals from the table. 

First Reflections
 41



Analysis and the resulting transition matrix. 1 indicates a forbidden interval.

Final construction of the score:

So the final score is now constructed from the ensembles with the help of the selection principles 
specified by the composer, however the choice of values is not free for every parameter.

Hierarchy:

One of the most important aspects that sets Project 2 apart from Project 1 is the ability of the 
program to make parameters interdependent of each other. One of the reasons that it is in Project 
2 that the output is to be played by instruments, so playability is a relevant issue. However the 

composer is of course free to make restrictions that do not come from instrumental limitations, 

First Reflections
 42



but just from a compositional strategy. This was certainly something Koenig was aiming for (see 

quote in the introduction).
The composer can specify limitations for each instrument he’s going to use. This includes: 
pitches, range, durations etc... The composer then specifies which parameter will be the ‘main 
parameter’. The selection of values for the ‘main’ parameter are then completely free, while the 
others are restricted. 

Let’s look at an example how this would work when a composer decides to make instrument the 
main parameter.
The selection of the instrument parameter for each entry point are then free (that is according to 
the chosen selection principle), but the other parameters are restricted. If for instance an ALEA 
function provides an instrument with a duration it is not allowed to play, the program will try 

again until it finds a duration that does fit. If it can’t find one then it will insert a wrong one and 
print a comment in the score.

Combination/Union:
This is actually one of the more tricky concepts in Project 2. Originally only the Instrument pa-
rameter was meant to have more then one group in it’s ensemble. Without combination means 

that for all other parameters (so except instrument), only one group is selected for the formation 
of the ensemble.
It is however possible to have more then one group for the ensemble’s of other parameters. 
Combination/Union settings then control how the program uses these different groups.
Combination requires 2 things:

- The amount of groups in the table have to be exactly equal to that of the Instrument ensemble.
- The groups must refer to list items that tolerate each other. (see hierarchy)
Then there’s the concept of union/no union:
- With union, ensembles consisting of more then one group will just be considered one group.
- Without union, for every instrument group there is created a new layer, the group indexes being 

the same for the instrument and the other parameters. 

The goal of combination is similar to that of hierarchy: it allows the composer to connect certain 
values with each other, for instance certain group of durations will always be played with a cer-
tain group of loudness. 

First Reflections
 43



Total Duration:

The composer provides a total duration for the variant. One would expect the program to just fill 
the score with events until it reached this desired duration, however a different method is used. 
This is because the tendency mask is not read according to the time in the score, but on the num-
ber of the event. So the tendency mask needs to know the total number of events on beforehand. 
There was also a technical reason because of the limitation of hardware in that time.

For these two reasons Project 2 has to calculate an ‘average entry delay’ and make an educated 
guess about the total duration. The amount of needed entry points is then found for by dividing 
the total duration with the average entry delay. The given amount of entry points are then gener-
ated regardlessly wether the desired duration has been attained or not.

Summarize:

The list-table-ensemble concept allows the composer to construct different parameter groups 
from the same source list. The distinction between list, table and ensemble, creates a certain dis-
tance from the material, in that the material is treated on different levels of abstraction. I think 
this division in steps makes it easier to construct complex structures.

“There is no pre-established overall form in “project 2”, the program is arranged so as to enable 
the composer to work out structure-variants systematically. I envisaged a method by which the 
composer designs variant groups, scrutinizes the individual variants once they are composed, 
decides to have more variants , or programs a new group.”[Koenig,Genesis of form .p174]
This actually very much reminds me of working in BEA5 on Quite Analog, where I made trans-

formations of my initial sounds, the next settings of my patch would be largely influenced by the 
previous result.
One starts with the lowest level (the allowed values) then selects certain combinations of them in 
the table. It also eases the generation of variants, one can change the outcome just by changing 
the settings for one step.

With the help of tendency masks, the composer can make transitions and combinations from the 
states contained within the table. I find it inspiring that tendency masks are not just applied at the 
lowest level (providing boundaries for generating pitches or durations, which is the more casual 
place you would find the use of tendency masks).

First Reflections
 44



The hierarchy then allows for parameters to conflict limitations on each other, making one pa-

rameter more important then the others, thus giving it enough weight to carry the formal progres-
sion of a musical segment.

First Reflections
 45



PART III:

My Python Composition Tools

First Reflections
 46



What will follow now is a description of my Python software in it’s current state. 

My python program is a compositional tool to create CSound scores. Input to CSound always 
consists of an Orchestra and a Score file. The orchestra contains the oscillators, table read func-
tions, filters, multipliers etc. It is the synthesis part of Csound. 
All the durations, start times, frequencies, amplitudes, tablenumbers are contained within the 

score file, it represents the input data.

The rendering of these scores into sound files is not the final step in the composition though, my 
material is always edited and sometimes even put trough further processing. It provides a starting 
point for further exploration. 

Before I start explaining, I want to make some ‘disclaimers’ to avoid misinterpretation. 

First of all, I do not consider my software in a finished state. It’s interface consists of the python 
IDLE environment (which is actually not much more than a text editor that highlights the python 

code in colors). Visualization of output is extremely limited and happens through the LCD object 
in Max. Because of all this, it is now only meant to use for my own research, I don’t expect other 
people to want/be able to use it. Therefore this chapter will not be a manual to the program, but 
more a general description of it’s concepts. Many of it’s functions are only the first steps toward 
the goal they have been designed for. At the end of this chapter I will try to explain what my am-

bitions are with some of these functions.

Secondly, this program’s history does not lie directly in trying to imitate or develop further the 
Project 1 & 2 concepts of Koenig, it grew out of wanting to explore the issues that formed the 
piece Analog Repetition further. Actually one of the strongest inspirations came from listening to 

some old fortran/VOSIM pieces by Cort Lippe (Tapewalk 1 & 2, Samba, Vosive 1&2). I encoun-
tered them during my work digitalising the tapes from the Sonology Archive. I was quite im-
pressed with the timbral structure and the way repetition was used.  I later found out that these 
were actually live improvisations. Sometimes misunderstanding something can lead to new 
things, I guess.

Through the writing of this thesis I’ve become, of course, much more aware of the context in 
which this program might be placed. There are of course similarities between Project 1&2 and 

First Reflections
 47



my software. I also found solutions in Project 2 that might be able to solve issues that are still 

present in my own software. However there are also decisions from Koenig that were based on 
the limitations of hardware and the choice of programming language. Then there is of course the 
strong serial character, which might be not as relevant for me as it was then (although I’m not 
allergic to it, like some composers). 

Lastly, Project 1 & 2 are designed and used mostly for the creation of instrumental music. Al-
though VOSIM has been connected to the output of Project 1 for example, this was more meant 
to give a preview of the final instrumental results. However I think it is important to note that my 
software has also been limited by the instrument : CSound. Although it is much more free in pa-
rameters then let’s say a piano, there is still a very strong instrumental concept behind it: it’s 

structure devision in Orchestra and Score is a clear indication for that. In the description of my 
CSound orchestra’s I will also explain some of the methods I used to avoid the instrumental limi-
tations.

The discussion of my software will go in three steps:

- The lowest level (the Note, Construction of spectra)
- Intermediary level (the Group, listPointer)
- CSound orchestra’s

- Extending the Note: the FM and AM instrument.
- Upper level, how the material is used in the large form.

And lastly some final conclusions and future developments.

First Reflections
 48



L O W E S T  L E V E L

The Note:

The Note is the basic event unit in my program. It’s most used attributes are closely related to the 
fact that I use CSound, which also has a note-like event as it’s smallest possible structure. It 
might better be called a sound event, but Note is easier to type.
Attributes that are always used:

Attribute Usage

instrument CSound instrument number

time Start time of event

entry-delay Time between this event start time and the next eventʼs start time

duration Duration of envelope

amplitude Amplitude of sound

more instrument specific attributes, with this I mean that they are optional:

Attribute Usage

frequencies List of frequencies, how they are used is decided in 
the orchestra.

amplitudes to enable user to make spectra with different ampli-
tudes for the frequency components (strangely 
enough I very rarely used this)

pan amplitude per channel 

reso extra frequency for optional band filtering

readpoint read-point for buffer read processes

speed read speed for buffer reading (transposition

source this is an attribute not be used by CSound but that can 
give the program some information about the way the 
note was created (see ##)

First Reflections
 49



The Group:

The group is the next level in my hierarchy, it consists of a bundle of Note’s. The group also con-
tains methods to create durations, frequencies, envelopes...etc. for all the Notes it contains simul-
taneously. 

Frequency creation:

Most of my orchestras use 10 frequencies as a basis, here I will describe some of the methods 
used.

Type Description

- Uniform random Uniformly distributed frequencies

- Beta Random Can be biased to choose close to the limits (or not)

- Cluster Creates a cluster of frequencies above a randomly 
chosen base frequency.

- Harmonically A ground frequency is chosen and upper partials are 
generated by multiplying the fundamental

- Cluster A ground frequency is chosen and upper partials are 
chosen randomly 

First Reflections
 50



First Reflections
 51



Methods for creating entry delays:

Type Description

- Ratio A source list is generated with time values related by a ratio

- From a list A source list is chosen by the composer and ordered in a way 
he specifies

- Ratio entry delays:

 A basic duration has to be given and normally a single ratio. Then amount  durations will  
 be generated by repetitively multiplying the original duration by ratio.
 Example:
 (base duration: 1 second ratio: 0.5 amount: 5)
 1 0.5 0.25 0.125 0.0625 
 
 Optionally you can also provide a list instead of one single ratio. For every  multi 
plication one of the ratio’s will be chosen randomly. 
 Example:
 (base duration: 1 second ratios: [0.5,0.2,1.5] amount 10)

 1 0.5 0.1 0.09 0.045 etc...

- Entry Delays from list:
 The user provides a list with durations and specifies how he wants them ordered. 

 For each duration a weight can also be specified. The weight version is my most used  
 method of creating durations.
 
- FillDurBOEntryDelays:
 This fills the durations attribute based on the entry delays of the notes.

 The composer can provide a list with ratio’s and the function then makes a random selec-
tion from this list. I’m not to extremely happy with it though, because when a entry delay is very 
short and a short ratio is chosen the resulting sound  might become extremely short, or even sim-
ply inaudible. This is solved by a special function called clip dur, that fixes a minimum duration 
for all events in the group.

First Reflections
 52



- fillAmps:
Uses same ratio concept as durations, so a initial amplitude is multiplied with a ratio re-
cursively:
fillAmps (4,0.5)
1, 0.5 , 0.25, 0.125

fillPans:
 provides a random pan, the user can provide how many speakers may sound at a time:

Image (53.1)

First Reflections
 53



Special Group Methods

Combining and weaving Groups.

CopyFromGroup:
this allows you to copy a certain parameter from one group to another replacing what was al-
ready there. This makes it possible to use a lPointer for one parameter exclusively (thus breaking 
the link between parameters).
For example if you want a certain lPointer to only effect the order of the entry delays:

b = a.runlPointer(apointer) # run lPointer 
a.CopyFromGroup(b,entrydelay) # copy EntryDelays from b.

This method is actually very important in the use of this software, it allows me to reorder a 
Group, but only use one parameter from it.

Weaving Groups:

The idea behind this is that you first make 4 groups that are different from each other in charac-
ter. Then with the ‘supergroup’ methods you can weave notes from these groups with each other. 
With weaving I mean that a new Group is formed from combinations of chunks from the 4 
source Groups.
The pattern in which this happens is definable by the user. The pattern is defined by a string con-
taining the letters ‘a’ ‘b’ ‘c’ ‘d’. Every letter is replaced by a note from the corresponding Group.
a a a a a b b c c d a b b b c d d.

Note: More interesting generation methods should be possible. I would like to increase the num-
ber of Groups and to be able to use tendency masks to make the choice out of which groups to 
use values.

Shape Shotgun.

This is a tool that I created to solve the problem of creating structures with changing densities. 
The idea of it’s function is to put in a Group containing a balanced (high) density of events. Then 
for every event the shape specifies a chance that the event will be deleted from the group. The 
control for density is thus not exact, but for large numbers of events this difference will not be 

First Reflections
 54



noticeable. The shape can be specified through providing lists of points, or by drawing it in a 
max patch.

Image 55.1

Modulations.

Parameters that can be modulated:
start times
durations

entry delay
frequencies
read point in buffer

Shape Modulations: 

The shape itself can be provided in numbers, or drawn in a max patch.
The amount of allowed (random) deviation is then based on the Shape. These methods I mostly 
used to create subtle differences between 4 otherwise identical channels.

lPointer based modulations. 
These modulations are very similar to the ones I used in my piece Analog repetitions. At every 
first Note of a loop (the loop concept will be explained in the lPointer part) a new modulation 

First Reflections 55



factor is chosen, and for every note in the sequence this factor is multiplied with itself, thus re-

sulting in an exponentially increasing modulation. 

Lpointer
based modulation
 of frequency:
Image 56.1

ListPointer
The ListPointer object (lPointer in the program) allows me to construct an index list for a group 
to be reordered. It contains different methods to create these lists of indexes. The Group object 
itself has a method runlPointer that can be used to reorder the group with the indexes provided 
by the ListPointer. For me the initial interest was not so much what elements are selected, but 
much more how they are ordered and repeated.
Lists of indexes can themselves also be shuffled or mutated to create variants. The ListPointer 
can be compared to the selection programs in Project 2.

VintageLoops
These are called this way because they are inherited from my earlier BEA5 piece (analog repeti-
tion). The loop has 3 parameters that are defined as such:
inner loop size :the amount of indexes included in the repetition:
outer loop size : the amount this set of indexes is repeated
start index         : the index where the loop should be started

so an example with start index = 4, inner loop size = 4, outer loop size = 3 :
4,5,6,7 4,5,6,7 4,5,6,7

First Reflections 56



An important aspect of the ListPointer object is that it also stores the number of the loop (so the 
repetition) and the local index of the loop. For above example this looks something like this:

Indexes  4 5 6 7   4 5 6 7   4 5 6 7    8 9    8 9    8 9     8 9    2 3 4 5 6 etc...
Loop nr  1 1 1 1   2 2 2 2   3 3 3 3    1 1    2 2    3 3     4 4    1 1 1 1 1 
Local      1 2 3 4   1 2 3 4   1 2 3 4    1 2    1 2    1 2     1 2    1 2 3 4 5

This extra information can be used to do special modulation on the first event of a loop, or to 
even make a new group that has a time structure with events placed exactly on the beginning of 
the Source Groups-loops. 
I used this to make different layers of material that are structurally related in this way. The way 
one group is ordered becomes the time structure of the other. 

image (57.1) A visual representation of a vintageLoop, and on the right a close-up

First Reflections 57



Weighted-loops

Very similar in form to the Vintage Loops, only the specification of the length of the loops and 
the amount of repetition is no longer specified as a range but by means of weights.

for example:
weight list:    [1 ,0 ,0 ,2 ,1 ,5]	 weight list:        [1 ,1 ,0 ,3]
loop length:   1  2  3  4  5  6      nr of repetitions 1  2  3  4
this means that:
- only loop-sizes of 1, 4, 5 or 6 values will be created in the ratio 1:2:1:5
- the amounts of repetition will be 1,2 or 4 in the ratio’s 1:1:3
 

Possible improvement: 
Direct input of values and corresponding weights for long repetitions: 
[[1,2],[3,5],[14,1]] etc...

Walking Loops:

Initially there is a list with a certain number of randomly chosen indexes:
30,12,22,23
The next values will be a repetition of the old list but some of the indexes have changed by a sin-
gle step up or down, thus introducing a different event in the loop.
29,12,22,24
this process is repeated:
29,13,22,24
29,13,21,25
28,13,21,25
28,13,21,25
28,12,21,25
27,12,22,26

Horizontally the indexes thus behave like a random walk. The amount of mutation can be set 
through a parameter.

First Reflections
 58



Image (59.1) A walking list

Mutating List 

This is very similar to the walking list method, only in that the size of the loop changes over time   
because new indexes are added without overwriting the old one. A minimal and a maximal 
amount of values can be specified to keep the size under control.

28,13,21,25
27,13,21,24,17
26,13,20,24,18
13,20,24,18
etc...

First Reflections 59



Serial Loops:
This is based on the concept on wether indexes are not allowed to repeat until all indexes in the 
input have been used. When all items have been used, the indexes are serially transposed.

transposition Resulting Series

0 1347652

3 4673215

4 5714324

U N D E R  D E V E L O P M E N T :

Now that I’ve become familiar with the structure of Project 1 & 2, I think that there are certain 
things that could be improved in my own software.

Vertical Density or 'chords':

Reading about project 2, I realized that there is not really a concept of vertical harmony (or dis-

harmony) in my software. Of course I’m able to create different layers that have the same time 
structure (through the use of the method copyFromGroup). This doesn't solve however com-
pletely the problem of how elements that start at the same time are related to each other. 

lPointer control through tendency masks:

I would really like to control the behavior of the lPointer over time, so I can make transitions of 
for example from small repetitions to large repetitions, thus gaining control over periodicity just 
like Koenig had in Project 1, the difference being that he had no tendency mask available in Pro-
ject 1, these changes in periodicity were controlled in a stepwise way through the branching ta-
ble. One fantasy I have is a sound-structure that starts chaotic and then gradually gains structure 

or periodicity. 

First Reflections
 60



Horizontal Density:
Density was problematic until very recently, I've now solved it (for high density’s) with the shot-

gun concept, which I explained earlier. However at low densities, control becomes quite difficult. 
I think that I might devise a method of generate and test, similar to the concept of hierarchy in 
Project 2. What I mean is that I would make density a main parameter.
Entry delays should then be chosen in such a way that the resulting density of a section is equal 
to the required amount.

Probably this will only work well for low densities, or at least a small number of events, because 
if to many events are involved, the chance of finding the right solution by random selection will 
become vanishingly small. Maybe a sort of switching process has to be designed that controls 
low density’s through hierarchy, and high density’s with the shotgun method. Research will have 
to be done. My goal with all this is creating a variable density without losing all control of event 

to event characteristics.

lPointer shuffle:

A normal shuffle would be:
1 2 3 4 5 6 7 8 9

4 6 5 2 1 8 7 9 3

By using smaller chunks, the order can be shuffled locally, but global structure remains. exam-
ple:

1 2 3 4 5 6 7 8 9

[1 2] [3 4 5 6] [7 8 9]

[2 1] [4 6 5 3] [7 9 8]

2 1 4 6 5 3 7 9 8

By redoing this shuffle multiple times the order will deviate more and more from the original. 
Thus I could make a collection of lPointers and then have control over how similar they are.

First Reflections
 61



Time Trees: A different approach to connecting layers 

The idea behind time trees is very simple. This is the algorithm:
For every Note in the Group:
3. Randomly decide wether the note is to be split or not:
- Yes -> goto step 2
- No -> go back to step 1
2. Choose a ratio from the list.
3. Split the Note into two copies, splitting the entry delays according to ratio.
4. Store list and go back to step 1

 This results is a set of entry delays like this:
1
0.5 0.5
0.5 0.25 0.25
0.5 0.125 0.125 0.25
0.5 0.025 0.100 0.125 0.20 0.05 etc...

 visual representation of  a time structure tree:

The reason why this could be a useful method of creating duration is that it allows me to create 
different time structures that are more or less related by each other. In the following example a 
duration is divided 4 times (rule 1 to 4) and then 10 variations are presented. 

First Reflections 62



Another interesting aspect of this is that on all scales the same ratio’s apply.

However I think all this will only really be relevant if the other parameters are also effected by 
how the duration are divided.

First Reflections 63



Csound Orchestra’s

First of all it might be a good idea to explain why I choose Csound for rendering my sounds and 
not Supercollider or Max/MSP. CSound has some specific drawbacks:
- Realtime function is quite limited.
- It’s more aimed for the creation of events instead of streams.

- Sometimes rendering in high quality requires patience, although my instruments tend to be not 
to extreme in this respect.

The advantages though:
- Polyphony is never an issue, events that overlap do not cause any problem whatsoever.
- Start phases of oscillators can be controlled very exactly for every event, this gives better 

sounding attacks.
- Doesn’t crash. Ever.
- Timing is exact to the sample, timing in max/MSP appears extremely messy to me in normal 

mode, and still sloppy when the schedular is put in audio interrupt mode (for < 1ms durations) 
This can be very annoying when I’m trying to make multiple layers with synchronized events.

The choice of CSound as my rendering software for my structures has been quite influential in 
the way I constructed my software. 

Sine:

My most basic orchestra just contains 10 sine-wave generators that have an amplitude envelope 
applied to them.

Filtered Noise:

Same as above only instead of oscillators, this instrument uses band-filtered noise.

Filtered Pulse:

This instrument uses the lowest frequency in the list as a frequency for an anti-aliased pulse gen-
erator. The pulses are then band pass filtered as in the filtered-noise instrument.

First Reflections
 64



Filtered File:

Same as filtered noise and filtered pulse, only the input for the filters can now be a 4 channel file. 
This gives rise to 2 extra parameters, read-point and speed (transposition)

Ring-modulated File:

Same as the sine instrument with the only difference that it’s output is multiplied with a file.

File:

Just playing a file, frequencies are ignored, only amplitude, speed, readpoint, duration remain.

Voc Osc:

This instrument is a variation on FOF, but highly simplified, the only parameters being the fun-
damental frequency and 9 formant frequencies. Just like filtered pulse it uses the lowest fre-
quency as the ‘exciter’.

Extending the Note

All before mentioned instruments work best for events not much longer then a few seconds. 
The results generally are very quantized sound structures, which was something I actually aimed 
for when I was designing the python software and orchestra’s. However after making my first 
pieces with it, I worried that my software was maybe getting too ‘instrumental’ i.e. limited to this 

quantized textures.
One way I tried to avoid this is by using less ‘instrumental’ amplitude envelopes (square enve-
lopes), making durations larger then the entry delays. Another way of achieving blur, is process-
ing the output of CSound with simple Max/MSP patches doing granular synthesis Amplitude 
modulation, convolution with extremely long impulse responses, or filtering with high resonance 

etc...

First Reflections
 65



However the most successful solution came by finding a way to modulate parameters within the 

note event. The result is a sound event which has a changing spectrum over time. It is interesting 
to note that Koenig also differentiates the electronic sound event (Klangereigniss is the german 
term)  from the instrumental note , by stating that it has parameters that can change over time. 
(äst. prax. 3 p197)

- FM Instrument
In designing this instrument I choose not to use line-segment generators, but actually fill function 
tables (buffers) with values, and read them with cubic interpolation.
To fill the values of the table I actually combine the amplitude parameter of multiple notes into 
one table. This is still a bit arbitrary method, and I wish to try out more subtle ones in the future.

This would have to lead to more precise control of how the sounds timbre changes over time.
The structure of the FM synthesis is based largely on an old soft synth I was using a lot in my 
early sonology days: the FM7 (which is in it’s turn was inspired by the famous YAMAHA DX7)
- Seven oscillators, six of them modulating the fundamental.
- The mix between the 7 oscillators to the output can be controlled through the orchestra.

Some sound examples can be found on the cd.

First Reflections
 66



Some example code (more available on the cd)

from may21 import * # Import Software

# An example of making variants

CSound = CScore() # Contains the methods to generate the final .sco files for csound, out of the user defined 
groups

modclass = modData() # Class for modulation

functions = function()

a = Group()

a.fillEmpty(300) # create 100 events

a.fillFreqs(20,20000,3) # create frequencies for every note

a.fillEntryDelaysList([[1,5],[2,4],[3,3],[5,2],[8,1],[13,1]],'customweight') # use a weighted choice to fill 
entry delays

a.fillDurBOEntryDelays([0.5,1.0,2.0,3.0]) # ratio's for the durations

a.fillAmps(5,0.7) # fill amplitudes

a.fillPans([1,0,0,0]) # randomly choose pans (only 1 channel at a time will sound)

# The next section will re-order the frequencies with a listPointer.

apointer = lPointer()

apointer.weightedLoops([4,2,1,1,1,1],[4,3,2,1,1,1,1,1],100,300)

b = a.runlPointer(apointer) # create a temporary new group containing the listpointed frequencies

a.copyFromGroup(b,'freqs') # the listpointed freqs are recombined with the original group

a.stockorder() # adds up the entry delays to create the timestructure

a.forceLength(60) # normalize a score to wanted duration

CSound.fstatements = """f 1 0 16384 10 1

f 2 0 16384 25 0 0.01 100 1 14000 1 16384 0.00001

f 3 0 16384 20 2 1

f 4 0 524288 1 \"/Users/casper/Documents/Pythonstuff/CsoundOrcGen/bloup.aiff\" 0 0 0

f 5 0 16384 25 0 0.00001 100 1 16380 0.001 16384 0.000001 \n""" #fill functiontables (envelopes, soundfiles 
etc)

CSound.addFunctions(functions) # Fill the amptables

CSound.fillWithGroup(a) #Write csound .sco file

First Reflections
 67



First Reflections
 68



APPENDIX...

Considerations in choosing Python:

Advantages:
- I had used it before once, and it was a pleasant experience.
- Rather good documentation, good (external) tutorials.

 (I must note that the official tutorial gets a bit vague with the classes part, starts  to talk 
about all kinds of issues of design that I was not interested in.)
- Python is an interpreted language: this I find an extremely important factor, because it means 

that I can test things while I’m programming them, even single lines of code to check if I un-
derstood some new concept properly. Because I’m not a hard-core programmer this probably 

saved me lots of time.
- Portable, not platform depended (not important at the moment)
- It’s treatment of lists is very developed, tasks like sorting a list in a custom way are very easy to 

implement.
- The ‘object oriented’-aspect is clear and understandable for me. It’s nice that you can write 

__add__ methods for your own objects so you can use ‘+’ operators on your own objects. This 
is called operator overloading.

- Lots of library’s and examples are available, and because of python’s relative strictness, other’s 
people code is actually readable.

- I can program things with reasonable speed.

 Drawbacks:
- Slow, because it is always interpreted language, and can’t be compiled like LISP. For me this 

has never been a real issue, because I don’t do heavy computation with it.
- Using the print function seems to slow down output, so it is better to write a log file.

- the IDLE development environment is still somewhat underdeveloped, but this might also be an 
advantage, because if compared to X-Code, it’s at least 

- It’s error messaging could be better, for example it often gives the rule where an error occurs 
but it doesn’t 

First Reflections
 69



W O R K  O N  S T E R N E N R E S T

A Part of the spatial movements

This is a project I got involved in together with (fellow student) Billy Bultheel and Johan van 

Krey, somewhere around 2006. It is a piece composed for Wave Field Synthesis (WFS) and en-
semble by Willem Boogman. The scale of the piece was just colosal , we have been working on 
it for 3 years now (not continuously, of course). The last of the electronic music was finished this 
year. It has been preformed 3 times now together with Olaf Tarenskeen, Arnold Marinissen and 
the Spectra Ensemble.

The inspiration for Boogman to write the piece came through a lecture of astrophysicist Connie 
Aerts called ‘kosmische symfonieën’ (cosmic symphonies), in which she told about her research 
on a star called HD-129929. What made this star special is it’s rare inner structure that produces 
particular loud vibrations within the star. These vibrations are then detectable as fluctuations in 

the light reaching earth. With this information something can be told about the inner structure of 

First Reflections
 70



the star, something which is impossible to do in any other way. It is a field called astro-

seismology, and closely related to earth seismology. The only way we can tell something about 
the inner structure of the earth (size of the core, size of mantel etc.) is by the vibrations that 
travel through the earth. The same goes for stars.

The piece consists of 3 movements:

- Seeds of Structure: a guitar solo lasting 18 minutes with just 3 minutes of very minimal elec-
tronics that where only finished after the 2nd preformance of the piece)

- GLAS: HD-129929 the most important movement of the piece, which is about the lifecycle of 
the star itself. The electronic music is accompanied by a part played on glass objects by percus-
sionist Arnold Marinissen.

- Liminale: This is about two pulsars slowly rotating towards each other finally merging forming 
a black hole. The main part of the music is the ensemble playing pitches and chords based on 
the star frequencies.

I created the electronics for the first part, seeds of structure. The electronic music was actually 

finished last for this section. It uses the glassy sounds from the second part to represent a starry 
sky. Billy made the WFS score with point sources.

Most of the time spend on making the piece went into the 11 minute 2nd part of the piece, which 

is the star itself. The material in this piece consists of a few main groups:
- Areas of noise (created by Johan, later I made some changes to reduce CPU cost)
- Traveling waves (paths created by Johan, sounds created by me)
- R-modes (this was a mode of vibration that went right through the centre, glass filtering pro-

vided by me)

- Coresounds (sound provided with a patch of Johan controlled by Billy)
- Core traveling modes (Johan)
- Core pulse (Billy)

First Reflections
 71



Of course Willem was present with most of the creation of these sounds, or the tuning of them.

Willem always had the ambition to be accurate about the data, but that doesn’t mean that the 
piece is a direct model of the star. It is a combination of the reconstruction of the star but also a , 
and also a artistic view on what a .

The frequencies, rhythms and spatial movement of the electronic music (and the score for the 
instruments) are all based on the frequencies of the star. Of course the frequencies had to be 
transposed to be even usable at all (some of the period sizes are in the range of a few days).

The timbre of the electronic sounds are either based on noisy crackle like sounds (produced with 

a patch designed by Johan). Other glassy sounds based on the objects of the percussionist. These 
glass objects consisted of tubes, vases, a lampshade, little square plates, round plates, and a big 
glass table. They were very diverse timbrally.

One of my tasks in this project was to make the synthetic glass sound. For this I first did fre-

quency analysis on one of the recordings and tried to reproduce the sound electronically.
The first thing I noticed is that glass has very pure resonances, but almost no harmonic relation 
between them. Some objects are very rich in resonances (hundreds of them) while others only 
have just a few clear ones. Generally the lowest is the strongest, although there are certainly ex-
ceptions on that rule. My first experiments was to try and reconstruct the glass sounds by just 

adding up pure sine waves, which did make the original sound recognizable, but I was not satis-
fied yet with the quality. In the end I used very high resonance bandpass-filters, which also 
solved another requirement of Willem, the ability to insert the glassiness in the crackle sounds 
further on in the composition. I also added a final band pass filter over the whole spectrum to 
give the spectrum a more natural envelope. 

So then I analyzed all the remaining sounds with the help of Audacity, because the latest version 
has very descent peak detection in it’s spectral analysis function, I also wrote down what was the 
most prevalent frequency in the spectrum. I tried to automate this process but decided in the end 
that it was faster and more safe to just do it by hand.

First Reflections
 72



The glassy sounds formed certain chords (6 in total) al containing a maximum of 5 different 

tones. I made a patch that created the envelopes and also added a certain modulation in the am-
plitude of the sounds again related to the star’s frequencies.

The paths for the traveling waves (see image) where created by a patch made by Johan, I con-
structed a patch that was able to link the movements to the right soundfile and directly generated 

a WFS score file (we thus bypassed the use of Wouter Snoei’s interface).
In testing these movements we soon discovered that the doppler effect was very strong on these 
kind of movements, it completely transformed the sound. We then tried to make the star smaller 
and this made the doppler effect of course much less prevalent, but also the movement less dra-
matic. So in the end we decided to let the star ‘grow’ during the piece. In the beginning the 

sounds move from a maximum of 40 meters away and later almost 100 meters.

A rather interesting effect (but also complicating) was that because of the size of the composition 
(not in time or complexity, but literally the size) things that where synchronous in the score 
turned out to be asynchronous in the final result, because of distance differences. I realized that 

in WFS time becomes relative. I think you can imagine in what way this complicated providing a 
click track for Arnold and the ensemble.

Billy produced the sound for the core.

When we started to put all the separate parts together, some new problem was raised, the system 
couldn’t handle all the stuff at the same time. More annoyingly when the system overloaded it 
started to produce ear-splitting beeps at unexpected moments. I don’t just mean a little click, but 
really full gain beep, something like a fire truck at a distance of 1 meter. Especially at the mo-
ment where the star explodes, and a lot of sources are in the center of listening area, it became 

clear that we needed to think about optimization, or at least reducing the sound sources. Luckily 
for us, one of the PowerMacs drowned in it’s own cooling fluid, and both servers were replaced 
with Intel Macs, eventually giving a lot more CPU power, easing the problems a bit.

First performance of the piece was in an old warehouse in Den Bosch. The acoustics were very 

nice and the piece sounded much better then it did in Leiden. 

First Reflections
 73



Recently Wouter has changed some of the ways of rendering in the software, resulting in an even 

more accurate rendering of the sound-sources. Especially the traveling waves profit from this 
improvement, finally the listener should be able to clearly to follow their curved trajectories.  
Sadly the CPU use increased and again we got problems with huge beeps that could appear at 
any moment during performance of the piece. So we had to again remove some material (some 
of R-modes are completely removed after 6 minutes into the piece. Still I think it was worth the 

sacrifice, the sound has improved quite a lot.

The third part: Liminale

This part is about the remnants of the star moving outwards (represented by glass samples), 

something Billy designed the sound for together with Willem. At the same time two pulsars are 
rotating around each other and near the end of the piece form a black hole, which doesn’t make 
sound itself, but it does deform the glass sounds that remain. 

The sound of one of the Pulsars is based on a sample that is an actual recording of astronomers. 

It is quite an interesting sound, because it has all kind of strange rhythmic qualities, although 
pulsars are very stable objects (mega high mass in very very small area). Because the signal is so 
weak it’s quality probably has a lot to do with the way it was filtered out of the background 
noise. It was ‘tamed’ though, and it’s rhythmic quirks where controlled by a list provided by Wil-
lem

I do feel the piece suffers a bit from it’s huge density, you really need to hear it a few times to get 
everything out of it. 

-

First Reflections
 74



E X P E R I E N C E S  M A K I N G  T H E  B I L T H O V E N  C O U R S E .

In the early days of electronic music, the equipment used to make electronic music was still very 
primitive, and the majority of it not even designed for composing electronic music. Because of 

the limitations, making complex sounds often required lots of (manual) steps. Even for as little as 
a minute of electronic music consisting of sounds we would now consider trivial and basic, peo-
ple spend hours cutting and splicing little pieces of tape in the studio. 

I recently have acquired some feel with the immense dedication required making electronic mu-

sic this way, by making the Bilthoven course by Koenig.  It was given in 1964-1965 and meant 
as an introduction course for composers into the then still very young genre of electronic music. 
The equipment in the Bilthoven studio was very limited (even for it’s time). For Koenig himself 
it must have been like traveling back in time compared to the equipment he was used to have at 
his disposal in the Cologne studios. 

Even though I actually ‘cheated’ at many points during the process (using automated programs 
and sequencing software to do some of the zerhackungen and making the sine-wave mixtures), it  
was still quite a labour intensive process. Surprisingly, there were many moments during the 
process that I found very enjoyable and inspiring. Even though the exercises are quite strict in 

terms of freedom on behalf of the realizer, you never feel out of touch with the material. It is al-
ways clear what effect the transformations have on the material. This is not as trivial as it may 
seem. For me it was a refreshing experience having spent a lot of time programming my python 
software, where it would sometimes take me a day or two before I could really hear the results of 
my ideas.

Because you are having your hands (and ears) on the material I also felt more responsible about 
certain small decisions that where left free by Koenig. It forces you to be focussed on the details 
of the compositional process. Examples are the beginning and end frequencies of glissandos and 
the center-frequencies of bandpass filtering. Although these choices are completely left to you, 

doesn’t imply that you can’t make a strict plan or use some kind of simple algorithm/strategy for 
choosing these parameters, but it does mean that you are very directly confronted by the conse-
quences of that particular choice.

First Reflections
 75



The way it is sequenced or synchronized I also found quite fascinating, often Koenig provided 

zahlenmaterial that consisted of numbers representing tape centimeters. These then have to be 
used by the composer to make an interesting time structure. There is a lot of emphasis from Koe-
nig on planning the time structure by drawing a plan for this.

Finally even though the process takes a lot of time, there is also a certain efficiency to it. When 

working on one of my own pieces I start by creating massive amounts of different material and 
large groups and sections of it are thrown away because they are not usable or no longer fit the 
aesthetic of the piece. If a problem arises,  the solution was mostly in the creating even more ma-
terial. The Bilthoven Piece is much more efficient in that at least all of the final material is used 
in the piece, and it is even optional to combine it with some of the material needed in the produc-

tion of the sounds. But at least all the sounds where necessary for the end result.

Structure of making the Bilthoven piece.

- Syntheses:

The basic source material consists of two types:
- mixes of sine waves                        -> spectrum
- mixing different layers of pulses    -> puls-chords

These are then put through a series of transformations:

- cut and spliced with pauses to form little rhythm structures. 
- filtering
- enveloped
- ring modulated with filtered noise, sine tone, or a sine tone with a glissando.
- ‘zerhackung’: sliced with a paspartout band.

- transpositions 
 
In the end almost all of the material is synchronized to make small form sections.
These little sections are then put in a certain order that forms the whole piece.

First Reflections
 76



C O N T E N T  O F  C D :

- Pieces (in stereo format)

Quite Analog
 
    (BEA5)

Reflective Surfaces
   (Max/MSP)

Analog repetition         (BEA5)

A useful waste of time (python)

Decatola 
 
    (python)

- Full Python Code & some examples (with audio)

- Csound Orchestra’s

Note: My first idea was to include the python code in this papaer version but since that 
would take about the same size as the rest of the writings, I changed my mind.

First Reflections
 77



BIBLIOGRAPHY

Author Last Name, First Name. “Book Title or Reference 
Title.” City: Publisher, Date.

Ariza C. “An Open design For Computer-Aided Algo-
rithmic Music Composition” Boca Raton, Florida 
Dissertation.com, 2005

Dennet, Daniel C., “Darwin’s Dangerous Idea”

1995, Simon & Schuster Paperbacks, Inc.

Harley, James, “Xenakis, His Life In Music”

New York 2004, Routledge

Koenig, G.M. Ästhetische Praxis Texte zut Muzik” band 2

PFAU-Verlag,

Koenig, G.M. Ästhetische Praxis Texte zut Muzik” band 3

PFAU-Verlag,1993

Koenig, G.M. Ästhetische Praxis Texte zut Muzik” band 5

PFAU-Verlag,2002

Koenig, G.M. Genesis of Form 

Interface Vol 16 (1987) pp 165-175

Koenig, G.M. Projekt 1 HelpCollection (version 2002.38)

(distributed with Project 1 programme, available from the 
composers website http://www.koenigproject.nl’

Koenig, G.M, “Electronic Music Reports No3”

“project 2: A programme for musical composition”

december 1970, Institute of Sonology, Utrecht

Schoenberg, Arnold “fundamentals of Musical Composi-
tion” 

1970 Faber and Faber Limited pages 1 - 2

Xenakis, Iannis “Formalized Music” 

1992 pendragon press

Ulam, Stanislaw “Adventures of a mathematician”

1979 Scribners

 

First Reflections
 78

http://www
http://www



