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1. Introduction

During the course of my research at the Institute of Sonology, I became interested in 

employing artificial  neural  networks in an instrument  for live improvisation.  Most  of the 

literature  and  examples  of  application  of  neural  networks  in  musical  performance  that  I 

discovered initially was concerning either gesture recognition for optimization of mapping to 

sound synthesis parameters, or machine analysis of musical performance. However, I had a 

different idea: I was not inspired by the use of neural networks as an aid to do the work or 

accomplish  tasks  more  efficiently  that  could  have  been  accomplished  otherwise  (e.g.  by 

human  labour),  but  I  instead  desired  to  expose  the  inner  workings  of  a  neural  network 

through sound.

Since I saw no examples, it was not clear to me at first, how this could be done in a 

musical performance, and especially improvisation context. One trouble in particular was, 

how to  approach the complexity of  a  computation performed by a  neural  network in  an 

improvisation, were, traditionally, a performer needs to be able to act quickly and intuitively. 

For this reason I broadened my research towards approaches to musical performance with 

interactive computer systems in general.

As a result, this thesis consists of the following parts: an overview of the discourse on 

issues  of  the use of  the  computer  in  musical  performance in  the  past  couple  of  decades 

(chapter 2), followed by an introduction to the theory of artificial neural networks (chapter 3), 

and finally a presentation of my own attempts at implementation of a computer instrument 

using neural networks, and software developed for that purpose (chapter 4).
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2. Computers and Musical Performance

2.1 Introduction

The pioneer of interactive music systems is widely considered to be Joel Chadabe, 

both according to  his own account (Chadabe, 1984) and that of others (Murray-Brown et al., 

2011). He began performing with his system in 1977, and filed a patent for it in 1985 (US 

4,526,078). In one of his rather recent papers he still states: “The concept of an interactive 

instrument may, in the near future, define a new way for the public to experience music.” 

(Chadabe, 2002, p. 2) And he is right, for it appears that even in the discourse following the 

onset  of  the  new  millennium  the  success  of  novel  instruments  designed  for  musical 

performance  is  still  measured  to  large  extent  in  relation  to  conditions  that  apply  to 

performance on traditional classical music instruments and compositions written for them. It 

appears that it is primarily the mode of listening, the reasoning about the expectations of the 

audience, and following from that, the strategies of composition and instrument design to 

target  these  expectations,  that  need  to  be  changed  in  order  to  make  room  for  better 

appreciation  and  consequently  exploration,  creativity  and  refinement  of  novel  music 

instruments.

The practice of designing novel music instruments has well mushroomed since the 

early attempts of Chadabe, and the technology involved has gradually become more and more 

accessible.  We  have  seen  in  the  last  decade  a  boom of  this  practice  and  the  idea  has 

proliferated to such an extent, that in the young generations of computer music artists it has 

become almost self-evident that the purpose of performing on stage involves presentation of a 

newly designed instrument. Despite the fact that it has become common practice, we feel that 

it demands an evolution in reasoning about, and a shift in perception of this activity. We will 

walk through some theory in the field of instrument design, that has been produced in the 
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past, before we reach to conclusions.

2.2 Technology and Virtuosity

Schloss and Jaffe (1993) explore the potential problems that “too much” technology 

can create in musical performance, and propose that this invites to a reconsideration of what 

constitutes a musical performance at all. They recognize virtuosity as  one of the significant 

aspects of performance, adding that this applies to the perspective of the audience, and thus 

avoiding  the  question  of  performer's  own  point  of  view.  Acoustic  instruments,  as  they 

proceed,  have  since  beginning  exhibited  a  one-to-one  relationship  between  performer's 

gestures and the resulting sound, while the introduction of computer in live performance has 

detached this relationship and substituted it with the possibility of very complex mapping. In 

the  absence  of  perceivable  coupling  between  the  performer's  activity  and  music,  the 

interaction with the instrument begins to border on magic. The question that arises is, whether 

“we need a perceivable cause-and-effect relationship in live performance”. At that point they 

conclude it is a question that still needs to be answered.

According to their account the problem emerged quite recently, as it had only become 

a  wide  possibility  to  perform live  with  a  computer  in  real-time  since  a  few  years  ago. 

However, in a paper published a decade later Schloss (2003) continues to expose the same 

problem, posed in even more severe terms, saying that with the use of computers the cause-

and-effect  link  has  effectively  disappeared,  and  that  it  is  necessary to  consider  the 

visual/corporeal aspect of the performance from the observer's point of view, or the integrity 

of the performance is jeopardized. While Schloss and Jaffe (1993) noted in the beginning of 

the paper that virtuosity is not a feature of all musical traditions, Schloss (2003) later states  

that it is common across all cultures that the performer is typically “doing something that the 

audience cannot do themselves”. Further on, he emphasizes the importance of visible effort of 

the performer, as an expression of commitment to their activity, be it the facial expressions of 

a singer, “the bulging veins in the neck of the trumpeter blasting a high C, or the sweat-

drenched body of  an African drummer”.  Even the grimace  of  a  rock guitar  player  is  an 

example, and despite the fact that the latter may be largely ingenuine, it avoids the problem 

that computer instruments exhibit, as “it is still a physical instrument, so the observer can 

extrapolate the effort without a lapse of belief”.
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Based on this reasoning we could conclude that no matter how real the apparent effort 

and virtuosity of  the  performer  is,  and how much it  really relates  to  how the  performer 

actually feels and what they believe themselves, it plays an important role in the reception of 

musical performance by the audience. It establishes a certain trust in the audience that the 

performer is really contributing with their actions to the music heard. Schloss notes that these 

requirements  may often  be  considered  extra-musical  (Schloss,  2003),  but  he  offers  little 

argumentation as to why the traditional strong coupling between the gesture and the sonic 

result is still a relevant solution to the practice of music creativity and performance today, in 

the first place, and why it should always be so. He does not elaborate much theoretically on 

the possibility that even if the old problems apply, with a new kind of instruments there might 

also be new solutions necessary or even latently available, or that the conditions of music 

perception itself may change.

We might be more inspired by looking into Schloss' and Jaffe's examples from their 

own musical practice. They have collaborated in a number of performances utilizing physical 

controllers plugged into a computer for gesture processing or sound synthesis, among which 

are Wildlife (1991), featuring as a case study in the earlier paper (Schloss and Jaffe, 1993), 

and Suite from the Seven Wonders (1996), referred to in the later paper (Schloss, 2003). Both 

compositions  make  use  of  the  Radio  Drum,  played  by Schloss  -  a  device  sensing  own 

movement in three dimensions, developed by Bob Boie and Max Matthews - and Wildlife 

also employs the Zeta Violin, played by Jaffe - an electric violin with a pickup and a pitch 

detector for each string.

In regard to Wildlife, Schloss and Jaffe describe their position in a situation in which 

they gave computer a considerable autonomy in generating musical material as akin to that of 

a conductor or a cowboy:

In such a piece, the conductor gives signals that control the large-scale flow of the 

music, but without specifying the individual details. To use a more colorful analogy, 

the independent computer processes are like cattle that are allowed to wander over the 

open plains and the performer's control is that of the cowboy who reigns them in 

when it's time to go into the corral. (Schloss and Jaffe, 1993)

To regard their activity in such a way was a solution to the problem of  “feeling the music 

was 'getting away from us.'” Logically, this is only a solution to their own point of view on 
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the activity, and not that of the audience. However, this addresses the other side of the issue 

that they did not refer to in the initial exposition of the problem.

Another  interesting  issue  raised  in  Wildlife  stems  from  such  a  design  of  the 

interactivity  that  both  performers  may influence  the  same musical  parameter  in  different 

ways.  For example,  both may affect the pitch of the final material,  and their  actions can 

transpose the base pitch, the pitch range, or the internal harmony of the sounds triggered by 

the other performer. They describe this effect as “'pulling the rug out from under' the other 

player”. This issue is different from the one presented in the previous paragraph in that it  

concerns the problem of cause-and-effect link as far as “vertical” structure or momentary 

result is concerned, rather than temporal structure. As opposed to the former issue where the 

control is lacking in regard to  when the change in the musical material happens, here the 

emphasis is on lack of control in regard to  how exactly the change happens, although the 

change is triggered entirely as a result of the performer's action.

Both sides of the issue, however, may well fit within the general problem of lack of 

cause-and-effect link, that is, lack of performer's control over different aspects of the sonic 

result, and unpredictability thereof. In any case, these are examples of issues experienced by 

the  performer  and  not  the  audience.  Schloss  and  Jaffe  (1993)  express  that  they  can  be 

overcome by extensive practice and improvisation, which allows in the first place to discover 

the specific difficulties in the interactivity with a complex system, and then to explore and 

learn possible ways to overcome them. We may ask at this point, how can unpredictability, if 

seen as problem in itself,  possibly be overcome? They offer quite an indicative example, 

which for that reason I quote here in its entirety:

As a simple example, in the fourth movement, the violinist supplies the pitches that 

make  up  the  percussionist's  improvisation.  The  percussionist  can  choose  to  play 

recently-played  pitches  or  can  go  back  in  time  to  pitches  played  earlier.  In  this 

context, the violinist plays only occasionally and in such a manner as to change the 

flow of the ongoing music. This movement was particularly difficult for him because 

the  effect  of  material  he  played  was  evident  only  some  time  later  when  the  

percussionist played these pitches. Yet, an implementation detail turned out to supply 

the answer.  It  turns out that  the “remembered” pitches played by the violinist  are 

stored in a buffer that is not circular. Thus, every hundred notes (this number was at  

first set arbitrarily), the buffer would be empty and would start to be refilled again. 
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This quirk turned out to provide just the "foot in the door" that the violinist needed. 

By playing tremolo, he could fill up the whole buffer with a single pitch and constrain 

the percussionist to that pitch. The implementation also guaranteed that every now 

and then the percussionist  would be  forced  to  play only very-recently performed 

pitches. Thus, what started out as an arbitrary irrelevant constraint turned out to be an 

asset in disguise. "It's not a bug it's a feature!" (Schloss and Jaffe, 1993)

We can extrapolate from this to a conclusion that unpredictability or remoteness of the effect 

need not be solved by removing it. There are solutions that allow one rather to turn these 

features into a meaningful participant in the music. As the example above shows, despite the 

fact that the details of what is going to happen are unknown or can not be predicted, it is 

possible to learn methods of action within the range where control is indeed retained by the 

performer,  possibly even actions performed  after  the unpredicted event,  that establish the 

relation with that event, and between the event and the musical result as a whole, and thus 

make a meaningful place for such events in the context of the entire performance. We might 

go on to  say that the meat of a performance with complex interactive instruments  partly 

consists precisely in this interplay between the lack of control and the possession of it.

Returning  to  the  problematics  of  reception  of  the  performance  by  the  audience, 

Schloss and Jaffe do give exemplary solutions from their practice. Both in Wildlife as well as 

Suite from the Seven Wonders they begin with a very simple interaction scheme, and then 

proceed gradually to introduce complexity. In such a way the audience has time to recognize 

at the beginning the basic principles of connection between the performer, the instrument and 

the sound, and although further on in the performance they may not understand anymore 

exactly how the performers do what they do, they have established by then that bond of trust 

with the performers, that I have written about earlier. After all, the audience may have just as 

little clue about how exactly a classical pianist presses the piano keys in order to produce the 

music, but they can enjoy it nevertheless.

We have seen that, in addition to how the problem was presented initially, there are 

considerable new issues brought out by the use of complex interactive instruments also on the 

side of the performer, not only the audience. These issues, as I have argued, may be solved in 

a  dialectic  manner  and  overcome  in  a  concept  of  virtuosity  that  includes  the  interplay 

between control and the lack of it. Perhaps this is also what Schloss and Jaffe (1993) refer to 

in their conclusion, albeit seemingly contradictory with their initial statements on its own: 
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“Digital  signal  processing  will  help  a  great  deal  in  this  problem,  because  the  virtuosity 

inherent in playing acoustic instruments can be retained”. They continue: “As for the global 

problem of complexity and loss of the perception1 of cause-and-effect, we believe that this is 

a problem that must be dealt with individually in every situation, and to some extent will be 

answered by the response of the audience.” (Schloss and Jaffe, 1993) This is to some extent 

suggestive of the possibility that the mode of perception by the audience is not set in stone 

and may change in future, or even that it might be actively changed through the practice of 

composition and performance. We will return to this idea later.

2.3 Towards Exploratory Engagement

We have shown how the  understanding of  the  issues  related  to  performance with 

interactive computer instruments may be shifted and better understood if we consider that the 

content of the music is not only in what the performer expresses through the instrument and 

his actions, but also in the relation  between the performer and his instrument, making this 

interaction itself an explicit part of the matter of musical performance. We will trace the path 

towards this more cybernetic understanding of the role of interactive computer instruments 

along  the  lines  of  difference  between  two  papers  in  which  David  Wessel  was  involved 

(Wessel and Wright, 2002; Wessel, 2006).

Wessel and Wright (2002) introduce their subject with the following words: “When 

asked what musical instrument they play, there are not many computer music practitioners 

who would respond spontaneously with 'I play the computer.'” To set an early context for 

reasoning  about  this  paper:  according  to  my  own  experience  and  that  of  my  colleague 

students at the Institue of Sonology, this is no longer true. I have seen computer music artists 

answering without hesitation just that, and I have given such an answer myself. This may be 

indicative not only of the possibility that self-perception of the young generation has changed 

in the decade passed since the publishing of that paper, but also that their understanding of 

what are the expectations of their audience has changed.

The paper is valuable, however, in so far as it examines the problems involved in the 

use of the computer as musical instrument, that might lead one to avoid such an answer, if 

they did so, and thus offers an insight into what are the computer's inherent differences from 

1 Emphasis by the author.
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the classical instruments. Wessel and Wright point out that the acoustic instruments, no matter 

how different they are, all fall under the paradigm of “one gesture to one event”. We can 

equate this to the characterization of acoustic instruments by Schloss and Jaffe as exhibiting a 

tight cause-and-effect link between the gesture and the sonic result. Akin to the metaphor of 

a condutor and a cowboy that the latter authors attribute to the performer, Wessel and Wright 

apply to the activity of the performer the metaphor of “driving” or “flying” the instrument: 

the performer gives directions while the instrument performs the actual movement through 

the musical matter. Figure 1 indicates how a generative algorithm employed in the computer 

as instrument allows for a much more complex mapping between gesture and sound output 

than is typical in an acoustic instrument.

Figure 1: Conceptual framework for controller research and development 

(Wessel & Wright, 2002)

Furthermore, the figure bares the form of a closed loop, showing how performer's 

evaluation by perception of the sonic results affects their intentions and thus further action. 

This is true also of a performance with an acoustic instrument: despite virtuosity, momentary 

adjustments  of  gestures  are  performed  to  achieve  desired  sound;  in  addition,  large-scale 

phrasing  is  often  not  completely  determined  in  advance,  but  performed  based  on  the 

perception and memory of passing musical material. Nonetheless, we may say that the aspect 

of feedback is more emphasized in performance where the sonic outcome of gesture can be 

much less expected, as a consequence of deliberate instrument design. This special attention 

given to the performer's preceptive evaluation of own activity is a feature shared with the 

science  of  cybernetics,  and takes  the  same place  as  the  feedback loop that  constitutes  a 

cybernetic system. As we will see, Wessel (2006) later expands this scheme in a way that 
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brings it even closer to the form of systems as studied by cybernetics, and explicitly refers to 

theoreticians of that field.

Wessel and Wright (2002) also deal with a wider topic than Schloss and Jaffe (1993), 

since they “concentrate on factors such as ease of use, potential for development of skill, 

reactive behavior, and coherence of the cognitive model for control.” In this context, they 

consider two attributes of musical instruments at which computers differ in comparison to 

acoustic  instruments:  namely “low entry fee”  and  “no  ceiling  on  virtuosity”.  Traditional 

instruments often demand a large amount of practice before any sound at all can be made 

with them (consider wind instruments), or at least in order to gain any useful control of the 

sound  output.  However,  they  allow  one  to  improve  and  expand  their  mastery  of  the 

instrument and attain ever more skill in musical performance. Computers on the other hand 

offer the possibility of design where simple instructions produce rich sonic results and typical 

interfaces  easily  available  to  control  them  are  often  rather  toy-like  and  “do  not  invite 

continued musical evolution”. The primary question that Wessel and Wright try to answer 

therefore is: “Is the low entry fee with no ceiling on virtuosity an impossible dream?”.

We may ask ourselves in return, how does this relate to the problems of computer 

music  performance  that  we  have  addressed  so  far.  The  subject  of  Wessel  and  Wright 

definitely concerns rather the performer than the audience, and it is justified in the light of the 

process of learning and expanding the skill in handling an instruments as the primary topic. 

But we could speculate that the “low entry fee” for the practitioner to learn also affects and 

implies possible solutions to audience's understanding of the relation between the performer's 

activity and the sonic result, and hence understanding and appreciation of the music itself. 

The idea of music as being grounded in the play and interaction with the instrument may be 

extended into the sphere of happening between the stage and the audience. We will see later 

how a certain “game” in this sphere (not implying necessarily the audience's interaction with 

the sound-producing device) may propose a fruitful shift in musical paradigm.

Meanwhile,  Wessel and Wright sum up the features  that allow them to affirm the 

possibility of both low entry fee and no ceiling on virtuosity under the conceptual umbrella of 

“control intimacy”. They continue by describing both technical innovations as well as design 

metaphors employed in computer instruments that satisfy the necessary conditions. On the 

technical side, the first condition for control intimacy is low latency between the gestural 

input and the ability of the computer to respond to it. This is a rather obvious condition, and 
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most early recognized and acknowledged by computer performers themselves. The concept 

of “continuous control” as opposed to “discrete events” may be a less obvious one. The MIDI 

protocol which has been in use for digital communication between physical controllers and 

the computer for several decades is based on a notion of discrete events (explicit onsets and 

durations) and no matter how the controller itself is designed, within the MIDI protocol the 

communication is obliged to conform to this notion. The newer OSC protocol is rather free 

from that notion, albeit still a discrete message protocol, but it allows one greater flexibility 

in assigning the function to each digital event send through the wire. Wessel and Wright, 

however, describe alternative systems that they have developed, and the speed at which these 

devices  can  process  gestural  control  may allow it  to  be  tightly  synchronized  with  audio 

synthesis at the audio sampling rate, which results in true continuous control.

On the side of the cognitive aspects of computer instrument design Wessel and Wright 

describe  several  metaphors  of  control  that  contribute  to  control  intimacy.  A too  obvious 

mapping between dimensions of control and musical parameters, as they say, does not allow 

for attractive interaction and is “musically unsatisfying, exhibiting the toy-like characteristic 

that  does  not  allow  for  the  development  of  virtuosity”  (Wessel  and  Wright,  2002,  p.3). 

Instead, they propose other mappings where control dimensions collectively contribute to a 

plethora of musical attributes. These  approaches are rather associative of everyday activities, 

and include metaphors of “drag and drop”, “scrubbing” and “dipping”. Their examples of 

musical embodiment of these metaphors all involve the computer producing a relatively large 

portion of the perceivable variety in the sonic outcome, and while the performer keeps the 

power of activating the sound and silencing it at will, the interaction aside from amplitude 

dynamics fits well to the idea of “flying” and “driving” presented earlier.

To sum up, the concept of control intimacy, although positing low latency as the first 

and fundamental condition, does not imply an event-by-event association of gesture to sound 

output. It does, however, assure the possibility that where an immediate effect of control over 

an aspect of sound is desired (however abstract it may be) it is obtainable. Furthermore the 

intimacy may be interpreted not as direct closeness in formal relationship between gesture 

and sound elements, but rather in relation to the total experience of the instrument and the 

ability to recognize familiar forms of interactions (with real-world objects) in the cognition of 

the instrument's control interface and through its sonic feedback. Although the metaphors of 

interaction employed in the examples of Wessel and Wright are on the first  thought only 
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apparent to the performer and not the audience, since the physical device that they used is a  

touch-sensitive tablet, and the gestures are relatively minuscule from the point of view of the 

audience and hence hardly perceivable,  I  would argue that with careful exposition of the 

methods of interaction throughout the performance, the employment of such metaphors may 

very well help the audience to grasp the principles behind the performer's activity.

Figure 2: A framework for reasoning about computer-based musical instrumentation

(Wessel, 2006)

In a later paper, Wessel (2006) extends the above mentioned scheme for reasoning 

about  musical  performance  with  computer  instruments  (Figure  1)  with  an  addition  of 

elements that make part in a rather exploratory interaction with an instrument, as opposed to 

the performance of a trained virtuoso (Figure 2). We can see that aside from determined 

intending, the left-most end of the structure – representing the origin of activity – features in 

an equivalent position the notion of “babbling”. This clear association with the way a human 

child learns to speak in his early experiences of the world are indicative of Wessel's research 

being grounded in the topic of learning and dealing with the  process of constitution of an 

actor's  interaction with the environment,  rather  than a  system in which the interaction is 

already well established and is taking on paths well “walked in” (not to say worn out). The 

title of the paper alone (An Enactive Approach to Computer Music Performance) already 

places  the  research  into  the  context  of  the  enactive  view  of  perception  and  cognition, 

pioneered by Francisco Varela (and others) who is considered also as one of the actors of a 

revolution in the field of cybernetics whereby in the 1970s the field took upon a shift in 
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attention  from  how  individuals  steer  their  actions  according  to  the  feedback  from  the 

environment to considering how systems are formed,  continually modified, and constituted 

only  in  the  interaction  with  the  environment.  Wessel  explains:  “The  enactive  view 

emphasizes  the  role  of  sensory-motor  engagement  in  musical  experience”  (Wessel,  2006, 

p.93)

By carrying  out  laboratory experiments  analogous  to  those  performed in  research 

within the enactive approach to visual experience, Wessel has established that that “passive 

listeners do not develop perceptual skills to the same extent as those actively manipulating 

musical material”. Engagement in production of musical material therefore has a large effect 

on the development of the ability to perceive its structure and meaning. Here again, control 

intimacy is  stated as the primary condition for successful engagement.  But how does the 

introduction of  “babbling” to  the scheme of reasoning about  human-computer  interaction 

change the perspective? Wessel clarifies:

“Babbling  is  distinguished  from  intentional  commands  in  that  auditory 

feedback  provides  information  about  the  relationship  between  a  gesture  and  a 

resulting  sound  whereas  auditory  feedback  to  intentional  commands  provides 

information about the match between the desired output sound and the actual output 

sound.” (Wessel, 2006, p.94)

“Babbling is a non-goal-directed variation of the control parameters and is a key to 

the exploration of an instrument’s potential for musical expression” (Wessel, 2006, p. 

97)

Babbling, then, is the process in which the gesture-to-sound mapping, that is, the relation 

between motoric action and the resulting sound, is processed by the human cognition through 

auditory feedback. Intentional action instead deals with the comparison between desire and 

result; the attention is all aimed towards the goal, rather than the fundamental principles of 

the  interaction.  The relationship  between the performer,  the  instrument  and the  produced 

sound may be seen as analogous to the relationship of an individual to their environment, as 

studied in the field of cybernetics. It is at  the stage of the individual's exploration of the 

environment, that is, probing, sampling the environment's response, learning the coherence of 

one's own actions, that a specific system of interaction is constructed. Furthermore, following 
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a cybernetical reasoning, the system, and more importantly, the information cycling within it 

is constituted entirely by the process of performer's action at the stage of exploration. It is 

there that a unique, actor-dependent code of interaction and world of information emerge.

For the sake of communication, the individual codes of interaction may converge and 

find a common ground in a group of individuals – possibly to such an extent to become 

apparent from afar as having been predetermined, fixed, and the evolution seems to come to a 

halt. However, in the practice of performance with a new interactive instrument, this is rarely 

the case in the sphere between the performer and the audience. How, then, is communication 

in that sphere possible? I propose that, instead of trying to fit the performance with a new 

instrument into the established codes of communication, the audience is rather included in the 

exploratory activity of the performer and invited to witness the constitution of the particular 

musical world of the performance. This clarifies the aforementioned decision of Schloss and 

Jaffe to begin their performance with simplistic scheme of interaction with their instruments, 

and  gradually increase  the  complexity;  but  aside  from allowing  for  establishment  of  the 

audience's trust in the performer's ability and virtuosity, this enriches the view by explaining 

the  principle  by  which  the  audience  may  come  to  terms  with  the  constitution  of  the 

information circulating within the musical world of the performance, and hence the musical 

meaning.

2.4 Creativity and Constraint

When a performance with a novel musical instrument fails to be well accepted and 

understood, it is straightforward to blame it on the instrument. On the other hand, we have 

seen that the musical information may be regarded primarily as a product of action, more 

precisely interaction between the performer and the instrument, which may be extended, as I 

have suggested, to the interaction between the performer and the audience. Nevertheless, the 

above mentioned proponents of such a view seem to focus in larger part to the features of the 

instrument  that  enable  successful  interaction.  Wessel's  (2002,  2006)  suggestions  concern 

either the attributes that enlarge the freedom of the performer from constraints (low latency, 

continuous control) or make the instrument more suggestive of and intuitive in the modes of 

interaction.

Gurevich,  Stapleton,  and Marquez-Borbon (2010) have taken their  research in the 
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opposite direction. They conducted an experiment that involved 9 volunteer undergraduate 

and postgraduate music students, and a one-button instrument. The aim was to assess the 

possibility  and  conditions  of  development  of  individual  style  within  the  constraints  of 

performance  with  this  tremendously  simple  instrument.  The  participants  were  asked  to 

practice with the instrument for one week, and then give a two minute performance, followed 

by an interview about their experience.

The experiment  draws  on the  previous  work  by Gurevich,  Stapleton  and Bennett 

(2009), where the authors proposed that “within the NIME2 discourse, this concept of style is 

more useful than the traditional discussion of expression, as it disentangles behaviour and 

action  (and  the  perception  thereof)  from confounding  phenomena  like  emotion  and  the 

construction of meaning that are implied by the term  expression.” (Gurevich et al.,  2010, 

p.106).  This is useful because it allows for a definition of virtuosity as the ability to “not only 

realize difficult or complex structures, but to do so with a style deemed desirable.” (Gurevich 

et al., 2010, p.106). This implies that in order for the audience to perceive virtuosity, they 

must be able to separate structure from style, and Gurevich et al. (2009) argue that it is the 

constraints in interaction with the instrument that allow so:

The structure of juggling–tossing multiple objects from hand to hand–facilitates the 

differentiation of juggling tricks (e.g. shower vs. cascade) as stylistic variations on a 

common structure much more readily than a significantly looser structure such as 

things I can do with 3 balls (Gurevich et al., 2009, p.216)

While a more loosely constrained interaction may allow greater diversity in style, it will at  

the same time impede the audience's ability to recognize the variations in style, and hence 

virtuosity.  Gurevich  et  al.  (2009)  concluded that  the  appropriate  aim is  to  determine  the 

optimum amount of constraint that facilitates both diversity in style and the ability of its 

recognition. In contrast, Gurevich et al. (2010) attempt to experimentally verify how diversity 

of style is affected at the extreme end of constraint.

Constraint of a design is defined by Gurevich et al. (2010) as “the strong indication it 

gives  the user of a singular  method of use”,  rather  than “the number of possible actions 

offered by the design” (Gurevich et al., 2010) which relates to the number of affordances. 

Due  to  the  particularities  of  the  technical  implementation  of  the  instrument  used  in  the 

2 The International Conference on New Interfaces for Musical Expression
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experiment, it contained elements that increased the amount of affordances beyond that of 

just  pressing the main button.  The button would ideally turn on and off a single-pitched 

sound, but the pitch ended up strongly coupled to the power supplied by the battery, and 

would variate with the amount of charge in the battery. Moreover, the device featured a power 

switch, to avoid unnecessary battery use, and it was possible to affect the sound by switching 

the device on and off with the main button pressed.  The sound could also be filtered by 

covering small holes in the enclosure behind which the speakers were placed in the interior of 

the instrument.  It also makes part of the affordances for example that performance could 

make use of  spatialization by moving the whole instrument  in  space.  Nonetheless strong 

constraint was constituted by the fact that the design exhibited a very clear suggestion of its 

intended use which was solely to play the tone by pressing the button, and there was no 

suggestion by the authors of the experiment as to what other possibilities to explore. In spite 

of that, other aspects of the performance in addition to variations in sound output (length of 

notes, length of silences, etc.), were evaluated as part of the style, including different ways 

that the sound-triggering button was depressed (aside from an obvious press with a finger), 

the ways that the device was held, and the posture of the performer.

Experimenters found diversity among the participants in all of these aspects. Despite 

the  fact  that  many  participants  expressed  the  initial  sense  of  excessive  simplicity  and 

limitation of the instrument, they were eager to explore the possibilities and discover uses of 

the  instrument  beyond  the  simple  one  primarily  indicated.  Based  on  the  results  and  the 

participants' reports of their practice with the instruments, Gurevich et al. (2010) identify two 

distinct types of exploration: a vertical and a horizontal approach. The participants that fall 

into the class of vertical explorers would attempt to exhaust the possibilities within a single 

affordance,  and  then  discover  and  explore  a  different  one  only  as  a  result  of  meeting 

difficulties, and identifying problems underpinning dissatisfaction with the musical results of 

their  earlier  approach. The horizontal  approach, on the other hand, denotes an attempt at 

enumeration of all the affordances before exhausting the possibilities within each, and the 

drive  to  search  for  another  way  of  interaction  with  the  instrument  as  soon  as  one  is 

discovered.  Despite  the difference between the two participants that  strongly exemplified 

each of these distinct approaches, they both shared an extremely exploratory attitude, and 

would rate their own performance with lowest grades within the group, implying the belief 

that there is still a lot more to explore and master in relation to the instrument.
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Gurevich  et  al.  (2010)  conclude  that  diversity  in  style  of  performance  with  an 

extremely  constrained  instrument  was  achieved  by  the  performers  both  in  spite  of  and 

because of the constrained design. It was precisely the constraints that enticed exploration of 

possibilities beyond the immediately suggested affordances. On the other hand, as noted later 

in retrospection by Marquez-Borbon, Gurevich, Fyans and Stapleton (2011), exploration was 

possible also because there was no suggestion or indication given to the participants in the 

experiment as to how they could or should use the instrument. Although the design of the 

instrument itself strongly suggested a particular use, there was a kind of freedom in the lack 

of external prescription. Can we therefore still characterize the conditions surrounding the 

performances in the experiment as constrained? And how does this relate to the problem of 

the vanishing of the cause-and-effect link in computer instrument performance due to the use 

of complex gesture-to-sound mapping, that, we may say, constitutes another kinds of freedom 

and constraint?

The freedom of exploration in the one-button instrument experiment constituted in the 

constraint of suggestiveness, both external as well as internal to the instrument. Although the 

instrument exhibited an apparent strong indication of use, this may be so only because of the 

absence  of  a  broader  spectrum of  indication  –  when  the  spectrum narrows,  the  relative 

amplitude  of  its  contents  seem  relatively  boosted.  In  contrast,  a  broad  spectrum  of 

suggestiveness may be paralleled to noise. Contrary to possible straightforward conclusions, 

the narrow spectrum contains more valuable information to support exploration: the absence 

of immediately suggested possibilities can just as well play a role of positive information. 

Marquez-Borbon  et  al.  (2011)  associate  positive  support  for  application  of  skill  by 

experienced performers with ambiguity in instrument design. It is important to recognize that 

ambiguity in  this  sense relates  to  the presence of  minimal  information in  a  vast  field of 

openness, rather than no information, or saturation with information. A field saturated with 

possibilities  is  equal  to  a  field  of  emptiness,  with  no  point  of  departure  and  hence  no 

possibility  of  movement.  Ambiguity  on  the  other  hand  is  ambiguity  about  something, 

ambiguity about  what  path to  take from a particular  given standpoint.  This suggests  that 

richness  of  interactive  instruments,  allowing  ultimately  development  of  virtuosity  with 

personal style, should be based on such kind of ambiguity rather than a large quantity of 

complex pre-designed and suggested modes of interaction.

Nevertheless, we should hope that the bottom line of the above propositions is not that 
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it is best for new instruments to be simplified to the level of the one-button instrument used in 

the experiment by Gurevich et al. (2010). The availability of computers and contemporary 

technology naturally drives the desire for performance with instruments of more complex 

interactive  schemes.  We  have  already  seen  earlier  in  relation  to  the  examples  given  by 

Schloss  and Jaffe  (1993),  Schloss  (2003),  Wessel  and Wright  (2002),  and Wessel  (2006) 

suggestions that enable one to attain virtuosity with instruments that differ in their interaction 

from  traditional  one-to-one,  event-by-event  relationship  between  gesture  and  sound  in 

acoustic intruments. The concept of ambiguity in design presents further elaboration on how 

the  interaction  scheme  should  be  structured.  Most  importantly,  it  adds  to  the  idea  of 

importance of support for exploratory activity that we have touched upon before in exposition 

of  a  cybernetic  approach  to  musical  performance,  and  gives  a  clarification  of  how  the 

dynamics of this activity work, and on what kind of features of an instrument they may be  

based.  We  may  conclude:  no  matter  how  large  amount  of  affordances  an  instrument 

ultimately offers, and how complex relation between gesture and sonic result they may allow 

(or precisely due to these particularities)  -  in order  to  support development of virtuosity, 

which includes the development of personal style, the instrument shall best bare a certain set 

of constraints in its interface that constitute a productive ambiguity and invite for a process of 

discovery in which a musical vocabulary is constructed through engagement, instead of being 

prescribed.

However,  as  far  as  the  perception  of  virtuosity  and  understand  of  a  musical 

performance by the audience is concerned, Marquez-Borbon et al. (2011) conducted further 

experiments proving that the audience (including experts) can get into trouble understanding 

how the instrument works, i.e. the gesture-to-sound mapping, even by introduction of very 

little complexity:

Among some participants, this perceived complexity led to inflated evaluations of the 

performer’s skill and experience with the instrument. Other participants thought the 

performer’s actions amounted to mere “button-pressing,” suggesting the instrument 

was simple to master. Many concluded the performer must therefore possess intimate 

technical knowledge of the instrument, rather than bodily skill, in order to produce 

such a rich variety of sound. There was a similar perception that the performer was  

not fully in control of the sonic output, that he simply mediated some aspect of an 

automated  system.  Without  an  accurate  understanding  of  the  interaction  many 
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spectators found it difficult to assess attributes of the performance such as skill or  

error. (Marquez-Borbon et al., 2011, p. 375)

The aim of the experiment was precisely to asses the ability of the audience to understand the 

performer-instrument  interaction  when confronted  with  performances  with  instruments  of 

different degrees of familiarity. The instrument involved in the performance referred to in the 

quotation above was deliberately designed to be completely unfamiliar to the audience and 

would provoke a difficulty of understanding. However, no deliberate attention to the way the 

performance was structured is mentioned.

In contrast, I have suggested that the problem exposed in this experiment might be 

addressed by including the audience in the exploratory activity of the performer. I could now 

elaborate on this suggestion: an instrument designed for the kind of productive ambiguity 

described above, in such a way as to invite the performer into a process of creation of a  

unique  mode  of  interaction  through  the  process  of  exploration  and  discovery,  offers  the 

possibility of re-playing and enacting the same process during the performance. Specifically, 

the  movement  through the  evolution  of  interaction  with the  instrument  and thus  musical 

material may be more accessible to the audience when it consists of a dialectic in the field of  

“real” tensions between constraint and overcoming thereof, as experienced by the performer.

2.5 Composing the Instrument

An approach in this direction is proposed by Murray-Brown, Mainstone, Bryan-Kinns 

and  Plumbley (2011).  They begin  by  describing  the  contemporary  problem in  computer 

instrument performance in familiar terms:

“ Previous research points to a failure to balance complexity with usability, and a loss 

of transparency due to the detachment of the controller  and sound generator.  The 

issue is often exacerbated by an audience’s lack of prior exposure to the instrument 

and its workings.” (Murray-Brown et al., 2011, p. 56)

The problem can be very easily equated to that described by Schloss and Jaffe (1993) two 

decades ago and it seems that the same issues acknowledged at least at that time persist to 
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this  day.  However,  they  follow  immediately  with  a  true  Hegelian  twist,  exposing  what 

appears to be the paradox underpinning the conflict: novel musical instruments are “intended 

to be both a tool for creative expression and a creative work of art in themselves, resulting in 

incompatible  requirements.”  (Murray-Brown et  al.,  2011,  p.  56)  Instead,  they propose  to 

consider the instrument, the composition and the performance as one whole. They recognize 

an early effort in this direction – that of Chadabe in his concept of interactive composition. 

However, although Chadabe's algorithm generating novel musical material on-the-fly at the 

time of performance may be considered both as an instrument and a composition,  it  was 

regarded as a static tool, intended for the musical expression of the author. Murray-Brown et 

al., on the other hand, emphasize the role of instrument design and exposition as the content 

of the performance in itself.

Murray-Brown et al. lay out the conditions of engagement in the performance, both 

that of the performer and that of the audience. On the assumption that provoking a positive 

musical  appreciation consists  in  large part  in  appropriate  management  of  the expectation 

throughout the composition (balancing with each musical event the novelty in material and its 

consistency with what has passed), it is possible to apply to musical performance the theory 

of  flow by   Csikszentmihaly  (cited  by  Murray-Brown  et  al.,  2011):  the  condition  for 

enjoyment of music lies in a balance between the success of prediction of following events on 

one hand and the element of surprise on the other hand. This applies, in an analogous fashion, 

to  the  activity  of  the  performer:  pleasure  in  performing  comes  with  appropriate  balance 

between the effort and the ability to tackle, or tame if you will, the tasks imposed by the 

musical  material  and  the  mode  of  interaction  with  the  instrument.  This  state  of  flow is 

important  both  for  the  performer  and  the  audience.  However,  the  performance  with  an 

instrument unfamiliar to the audience poses a potential obstacle to their flow in two ways. 

Firstly,  the  enjoyment  of  the  audience  stems  partially  from recognizing  the  flow  of  the 

performer (which is analogous to virtuosity), which may be hindered by inability to recognize 

the difficulties with which the performer is confronted, and hence also whether or not the 

performer succeeded in his “tasks”. And secondly, since a novel instrument often also brings 

unfamiliar possibilities in musical material, the ability of the audience to construct a model 

the  musical  structure  on  the  background  of  which  to  build  the  expectations  is  largely 

overpowered by the difficulty thereof.

However, these issues are largely based on the premise that the instrument is intended 
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as a tool for the music as an entity apart that needs to be expressed. An opposite approach 

that allows to address the issue in a more fruitful way is to consider the interaction with the 

instrument, even the instrument itself, as a central part of the musical performance. In this 

context, music is not composed for the instrument, but the instrument is composed. Both the 

relationship  between  the  performer  and  the  instrument  as  well  as  the  audience  and  the 

instrument  develop throughout  the  performance.  Murray-Brown  et  al.  acknowledge  that 

attention to the way the instrument and its principles of interaction are exposed throughout 

the  performance  has  already  been  present,  both  in  theory  and  in  practice  (of  which  an 

example we have seen in the performances of Schloss and Jaffe), but what is novel is the idea 

that the exposition of the instrument may be seen as a temporal art form on its own.

We have already met the proposition to regard the issues of interaction with novel 

musical instruments apart from the notion of expression in the research of Gurevich et al. 

(2009, 2010) where the purpose of this was to allow better to address the conditions for the 

performer's development and the audience's perception of personal style and virtuosity. While 

the reason in that case was to separate the notion of virtuosity from that of expression and 

meaning, it is not the case in the intetion of Murray-Brown et al.  (2011) to disregard the 

notion of expression as such. Rather, they reject the usefulness of the notion of expression as 

that of something  apart from the exposition of the musical instrument. Instead, what they 

propose  is  that  the  temporal  development  of  interaction  between  the  performer,  the 

instrument and the audience is an actual musical expression.

Regardless of this distinction the research of Gurevich et al. (2009, 2010),  Marquez-

Borbon et al. (2011) and Murray-Brown et al. (2011) all meet the common ground at the 

importance of constraint in relation to creativity and exploration. Murray-Brown et al. reason 

that an apparent limitation of an instrument designed specifically for a performance is not a 

limitation indeed, but rather an asset:

…it is precisely within such a tightly constrained domain that new ideas happen, new 

ways of using (and abusing) an instrument are found, and new compositions, or even 

new types of music,  are created. In a time when musical programming languages  

have unleashed a bewildering amount of sonic potential, it is the constraints rather 

than the affordances of an instrument that characterise it. (Murray-Brown et al., 2011, 

p.58)
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In  the  context  of  their  approach  to  the  instrument  design,  the  composition  and  the 

performance, Murray-Brown et al. suggest the following three design principles:

1. Design for a single performance

2. Consider the rate that structures emerge

3. It is easier to begin ‘in the dark’

The first principle perhaps introduces most of the novelty in approach, as it dictates focus on 

mutual influence of music and instrument at  their  creation,  presentation,  consideration of 

impact  on  the  audience,  as  well  as  the  narrative  of  the  performance.  We  have  seen  an 

employment of the second principle already in performances by Schloss and Jaffe (1993, 

2002) in the gradual  introduction of complexity of interaction with the instrument in the 

course of performance, but Murray-Brown et al. place an emphasis on how the development 

of  the interaction affects  and constitutes the narrative of the performance and finally the 

totality of the music. The sound material should not be neglected as being only introductory 

and demonstrative until the complexity of interaction reaches a state at which the “expression 

of music” would be possible, but the music should be regarded as already happening in the 

full meaning of the word since the beginning of development, and with full responsibility for 

and contribution to the aesthetic value of the performance. Finally, the third principle simply 

states how precious we may consider an audience that has no knowledge of what will happen 

in the performance, and hence complete openness of expectation.

As a demonstration of practical application of the three principles, Murray-Brown et 

al. (2011) continue by giving an example of an instrument and a performance named The 

Serendiptichord,  created  in  collaboration  of  the  first  two  authors,  Murray-Brown  and 

Mainstone.  The  Serendiptichord  is  a  wearable  instrument  for  dancers,  embodying  the 

following  ideas:  “exploration,  discovery,  serendipity,  inspiring  creative  movement  and 

provoking playful behaviour”. We may notice here an echo of the features attributed to the 

activity  of  “babbling”,  as  described  by  Wessel  (2006)  within  the  enactive  approach  to 

computer  music  performance.  The  actual  course  of  the  dancer's  familiarization  with  the 

instrument was reflected in the composition of the performance and the interaction with the 

audience:

As the instrument was developed, a narrative emerged of the relationship between 

performer  and  instrument  through  stages  of  discovering  the  instrument  […]  The 
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narrative not only serves to unify music, instrument and interaction:  it  provides a 

framework for the instrument to be communicated to the audience. […] Establishing 

transparency –  the  connection  between  audience  and  instrument  –  is  part  of  the 

aesthetic experience. (Murray-Brown et al. 2011, p. 58)

2.6 Conclusion

I have attempted to show a path through argumentation in support of a view that a 

shift in reasoning about the computer music performance may place the discourse about the 

issues related to performance with interactive computer instruments under a better light, and 

into a more fruitful soil. The problems of the performer's development and the audience's 

perception of virtuosity in relation to interactivity consisting of a complex gesture-to-sound 

mapping  can  find  a  solution  by  changing  the  perspective  both  on  what  constitutes  the 

virtuosity and what constitutes the performance. Based on examples from compositional and 

performative practice of Schloss and Jaffe (Schloss and Jaffe, 1993; Schloss, 2003), we have 

established that virtuosity may be developed even in the absence of predictability of the exact 

sonic  output  of  the  instrument,  albeit  a  virtuosity  that  consists  in  an  interplay  between 

possession of control and the lack of it. An enactive approach to computer music performance 

(Wessel, 2006), inspired by the theory of cybernetics, further shifts the focus of attention to 

the  process of construction of musical meaning through exploratory engagement in music-

making with the instrument, and suggests the inclusion of the audience in witnessing of the 

becoming  of  a  musical  world  through  performance.  An  examination  of  the  effects  of 

particular kinds of constraint in the design of the instrument (Gurevich et al., 2009; Gurevich 

et al., 2010; Marquez-Borbon et al., 2011) led us to the concept of  productive ambiguity, 

which characterizes the design for exploration. Finally, the concept of instrument composition 

summarizes  the  above  propositions  into  an  approach  that  regards  the  exposition  of  the 

instrument and its methods of interaction and sound production as a temporal art form on its 

own.

I  consider  the  latter  as  an  extension  of  the  principles  of  constraint  as  applied  to 

instrument design into the principles of composition. In my view, the principles of constraint 

in instrument design establish an inherent dynamic in the instrument in regard to the way that 

the interaction by an engaged musician unfolds in time and with exploration. When such an 

25



instrument is “composed”, i.e. designed specifically for a performance and considered as one 

whole with the composition of music, the same inherent dynamics of the instrument come to 

work in the sphere of interaction with the audience, and allow for it to be engaged in the logic 

of unfolding end evolution of the music.
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3. Artificial Neural Networks and Application in Music

Artificial neural networks are a mathematical or computational model inspired by the 

structure and functioning of the real neural networks that make up the biological brain. They 

have  been  developed  mainly  with  the  purpose  of  making  possible  or  more  efficient  the 

computational solution of certain problems,.by taking advantage of the increasing knowledge 

of the role, structure and functioning of our own brain. In other words, the aim is to enabled 

the computer to do specific kind of work instead of us, with the same (or better, super-brain) 

efficiency as we do – the kind of work that it couldn't perform using more traditional models 

of  computation  employed  before,  although  they  already  allowed  it  to  excel  over  our 

capabilities at other kinds of computation and logical analysis. I am referring for example to 

recognition  of  patterns  and  comparison  of  complex  data  by  similarity  without  prior 

knowledge of the structure of the data. This type of work is most commonly considered to 

play an important role in what we understand by thinking and perception, and hence neural 

networks are often employed in the computational models that power artificial intelligence, 

and used in robotics. Neural networks are very useful in a number of scenarios for the reason 

that, by defining an underlying abstract model of computation - in independence from the 

data to be processed - they can be applied to a wide range of problems by means of self-

adjustment of own internals in accord to structures inherent in the input data, without the 

need of our intervention, and hence knowledge of those inherent structures.

Since the development of artificial neural networks is one of the propellants of the 

possibility of artificial subjects, autonomous in activities equal to those that a human can 

participate in, they have naturally been exploited also in the field of music, ranging from the 

activity of music analysis  to music making and performance.  Often,  they are particularly 

useful for their autonomy of operation, precisely because they liberate us from the need to 

understand the information that they process; their internal operation is itself  regarded as 
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understanding, whereas we treat them as a black box and we are only interested in the facts 

that they produce as a result of processing the information. I, however, am most interested in 

the use of neural networks as an aid in understanding of the process by which the information 

is  constituted,  processed  and  exchanged  by ourselves,  including  the  information  and  its 

exchange that makes up the world of musical communication and expression. By regarding a 

neural  network  system  as  a  mirror,  rather  than  a  substitution  of  our  own  activity,  and 

engaging in an exploration of its  internal behavior - exploration in the same sense that I 

exposed in the previous chapter in relation to interactivity in computer instruments – we can 

come to a reflection of our own understanding of music.

For the purpose of the topic,  I will  continue this chapter with an overview of the 

fundamentals of the theory of artificial neural networks and their various types and modes of 

application,  after  which  I  will  present  several  paradigmatic  examples  of  employment  of 

neural networks in the field of music,  computer instrument design,  and interactive music 

performance. I will refrain from the use of formalized mathematical expressions and rather 

use literal descriptions, as I think it is appropriate in this rather musicological context. The 

information  regarding  neural  networks  may  be  verified  by  consulting  Kriesel  (2007), 

whenever not specified explicitly.

3.1 Artificial Neural Network Theory

3.1.1 The Brain and the Computer

There are some problems that we meet in our daily life and are quite easy for us to 

solve instantly, but are rather hard, if not impossible, to explain exactly how we do it. For 

example,  recognizing  a  friend  from a  large  distance,  or  fitting  an  unknown song  into  a 

particular genre after hearing just a bar of music. We would run into a great trouble trying to 

put down a series of instructions for a computer to follow, in order to do the same. How do 

we learn to do it then? The answer is already there: we  learn. The knowledge required to 

solve the problem becomes embedded in our brain, without our consciousness of an explicit 

recipe for solution. Computers, however, can not work without such recipes. The computer, 

as a Von Neumann machine, operates in sequential steps, each step performing a well-defined 
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instruction.  In contrast,  neurons in  our brain all  work at  the same time – in  parallel.  As 

knowledge is gained, it becomes embedded in the developing structure of our brain – it is 

distributed across the whole collection of neurons.

This does not have effect only on possibilities of computation,  but also on speed. 

Although the computer contains a comparable number of transistors (the smallest elements of 

a digital processor) to that of the neurons in our brain, and the speed at which a transistor can 

change state is several orders of magnitude faster than that of a neuron, a computer still does 

not compare in performance to our brain at several tasks, due to the sequential nature of its 

operation.

Another distinction that the distributed nature of the brain brings is in regard to fault  

tolerance:  a  damage  at  a  part  of  the  brain  does  not  stop  the  operation  of  the  whole.  A 

computer program, however, crashes as soon as an invalid instruction is met, because it is 

undefined in  that  case  what  the  next  instruction  should  be.  Moreover,  since  the  brain  is 

plastic, meaning  that  the  connections  between  neurons  can  be  reconfigured,  and  are 

continuously being reconfigured as we learn, a fault in part of the structure can be remedied 

by re-establishing the same functionality by modification of other parts. But the brain is not 

tolerant only in regard to internal errors, but also external errors: we can understand speech, 

or  recognize  the  speaker  even if  the  voice  is  heavily affected  by various  influences  and 

departs from the usual.

Fault  tolerance and the ability to learn is  tightly connected with the possibility of 

generalization of knowledge and association of data: by observing several instances of songs 

within the same genre, we can generalize to the abstract common properties, and are able to 

associate further instances with the same genre.

Nonetheless, the computer, as a Turing machine, has the capability to simulate any 

other computational machine, so the idea behind neural networks is that a simulation of the 

parallel architecture of the brain on the computer will allow to implement the same features:

• self organization and learning

• generalization and association

• fault tolerance
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3.1.2 History

The first attempts at the computational modeling of the brain date back to 1943 and 

were  carried  out  by Warren  McCulloh  and  Walter  Pitts.  The  development  has  gradually 

accelerated since then, until Marvin Minsky and Seymour Papert published a paper in 1969 

disproving in a rigorous mathematical way the usefulness of the models available at that time 

for solving many important problems and predicted that the research was destined to meet a 

dead end. Despite the wide unpopularity of the topic that this caused, the research was picked 

up in 1972 by Teuvo Kohonen (also known for invention of the self-organizing map – a kind 

of neural network) and slowly reinvigorated until John Hopfield (the inventor of the Hopfield 

networks) in 1985 and the Parallel Distributed Processing Group in 1986 found acceptable 

solutions  to  the  problems  described  by  Minsky,  and  launched  the  field  into  an  era  of 

explosive development which lasts until today.

3.1.3 Structure

An artificial neural network consists of a set of  neurons, and  weighted connections 

between them. A connection supplies the data outputted by a neuron as an input to another 

neuron, while the weight has an excitatory or inhibitory role on the data - it amplifies or 

reduces  the  effect  of  the  data  on  the  neuron  at  the  end  side  of  the  connection.  In 

computational terms: the data processed by neurons are numbers, which while transferred 

along  the  connections  to  other  neurons  are  multiplied  by  the  weight  associated  with  a 

particular connection.

A neuron processes the incoming data in several stages: the first stage is expressed by 

a  propagation function which translates the input data vector (of which elements are data 

coming  from  outside  the  neural  network,  or  other  neurons)  into  a  scalar  value.  Most 

commonly the propagation function is simply a weighted sum of the input elements (hence 

the propagation function includes the implementation of connection weights).

The second stage is defined by the activation function, which describes the neuron's 

activity (output) in relation to the network input produced in the first stage. It implements the 

“switching behavior” of biological neurons: the latter exhibit a threshold in relation to the 

amount of electronic activity on the input side, above which they start to “fire” - produce 

electronic activity on their output side. The state of inactivity translates in an artificial neural 
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network into a low output value, and the state activity into a high output value. Examples of  

commonly used activation functions are:

• binary function, sometimes also called Heaviside function: produces either a 0 or a 1, 

according to whether the input is above or below the threshold

• hyperbolic  tangent:  for  input  values  substantially  below  the  threshold  the  output 

converges to -1, and for those substantially above to 1, while input in the range close 

to the threshold is mapped to a non-linear continuous slope between -1 and 1

• Fermi function, also named logistic function: similar to hyperbolic tangent in shape, 

however  its  output  is  in  the  range  of  0  to  1,  and  it  can  be  expanded  with  the 

“temperature” parameter that defines the steepness of the slope in transition between 

the extremes

And a less common activation function:

• stochastic: output depends on the input according to a random distribution

The third stage of data processing within a neuron is the output function, which can be 

used  to  further  process  the  data  before  it  is  transferred  to  other  neurons,  although  very 

commonly this is simply an identity function, which is equivalent to omitting this stage.

Neural  networks  can  be  designed  with  various  topologies,  that  is,  the  ways  that 

neurons are connected. We distinguish three types of topologies: feedforward,  recurrent and 

completely linked.

A feedforward network consists of layers of neurons, and each neuron can only have 

connections to neurons in the next layer. The consecutive layers are named according to their 

role: an input layer (the group of neurons processing data from outside the network), several 

hidden layers (invisible from outside), and the output layer (the neurons outputting the final 

result  of  the  network  processing).  A variation  is  a  feedforward  network  with  shortcut  

connections: connections are not only allowed to the next layer, but also to any subsequent 

layer, and hence such connections are called shortcuts.

A recurrent  network is  one in  which neurons may affect  their  own activity either 

directly (direct recurrence), by having connected their own output to their input, or indirectly 

(indirect recurrence) if connections towards the first layer are allowed, so that a closed loop 

may be formed through a series of connections. Such networks do not always have explicitly 

defined input or output neurons.
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In completely linked networks, connections between any pairs of neurons are allowed, 

except for direct recurrences. Moreover, the connections are required to be symmetric. There 

is no notion of layers, so any neuron can be an input or an output neuron to the network as a  

whole. A popular example of such a network is the self-organizing map, also called Kohonen 

map after the name of its inventor.

Training a neural network to produce a specific output in relation to input (analogous 

to  learning  in  humans)  consists  of  modifying  the  structure  of  the  network  (adding  and 

removing neurons and connections), the connection weights, the types of activation functions 

or  the  thresholds  of   neurons.  However,  to  ease  the  training  of  thresholds,  a  common 

approach to  implementation  is  to  represent  the  thresholds  within  the  structure  instead  of 

within the neurons - as weights of connections from an additional neuron with a constant 

output (typically 1). Such additional neurons are therefore called  bias neurons.  This way, 

training that only consists of modification of weights can also affect the thresholds.

According to  the way that the computation within a neural network is  performed, 

approaches  can  be  divided  mainly  into  two  categories:  synchronous and  asynchronous 

activation of neurons. Synchronous activation is closest to the biological neurons – each cycle 

of  computation  consists  of  each  neuron  calculating  its  network  input  by  means  of  the 

propagation function, activation by means of the activation function, and output by means of 

the output function. Synchronous activation can be used on any kind of topology, but it is not 

always useful, and thus computationally inefficient in many cases; consider a feedforward 

network with N layers: it would take N times the calculation of all neurons in order for the 

input neurons to have an effect on the output neurons.

On the other hand, asynchronous activation means that the neurons do not calculate all 

at the same time. Variations include random order of activation (a cycle for a networks of N 

neurons consists of N times randomly choosing a neuron for calculation), or sometimes more 

useful random permutation (each neuron is activated exactly once within a cycle, albeit in a 

random order). A variation reasonable for feedforward networks is  topological order – the 

order is chosen according to topology, for example from the input layer through consecutive 

hidden  layers,  to  the  output  layer.  Topological  order  is  only applicable  to  non-recurrent 

networks, though. In most cases, however, it is useful enough and most efficient to predefine 

a  fixed order instead of determining it  again at every cycle;  although some networks can 

change their topology and hence a fixed order may not be useful in that case.
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Input and output dimensions of a neural network signify how many neurons receive 

data  from  outside  the  neural  network  (the  input  neurons),  and  how  many  neurons  are 

considered to produce the result of the network's total computation (the output neurons). The 

sets of data given to the input neurons and data produced by the output neurons at each cycle 

are called input and output vectors, respectively.

3.1.4 Training

As explained earlier, the most interesting feature of neural networks is to be able to 

learn appropriate response (output) from examples (input), and then to arrive at generalized 

rules which it can apply to any new data not seen at training. The data supplied to a neural 

network at training is called a training pattern, and the set of all training patterns – a training 

set. As we have seen, a network learns by modifying its structure, which may include adding 

new  neurons  and  connections,  removing  the  old,  changing  connection  weights,  neuron 

thresholds or neuron functions. But except for the latter, these features can be to some extent 

simulated  only by the change of  connection  weights,  and thus  the  training  is  usually an 

algorithm that  prescribes  how the  weights  should  be  changed  in  relation  to  the  training 

patterns.

Paradigms of training and application of neural networks may be classified into three 

large categories:  unsupervised learning,  reinforcement learning, and supervised learning. In 

unsupervised learning the training set only consist of input vectors (input patterns), and the 

network tries automatically to identify similar patterns among those, and classify them into 

similar  categories.  In  reinforcement  learning,  the  network  processes  the  training  set 

consisting of input patterns, after which it is given the information whether it has performed 

well, and possibly how well, which it uses for learning. In supervised learning, a training 

pattern consists of two vectors: training input is a vector of input values, and teaching input 

is a vector of correct output values for the training input. Thus, for each processing of a 

teaching  input,  the  network  can  compute  the  exact  error  vector,  which  is  the  difference 

between the actual output and the teaching input, and hence also called difference vector.

It is particularly of interest to know whether the network has only  memorized   the 

input data, or it has actually learned the inherent rules, and is able to generalize to new data 

after training. In the former case, it would produce correct output for all the training patterns, 

but fail to do so for any other pattern. This may be a result of  overtraining. It is therefore 
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useful during reinforcement and supervised learning to test the network error both on the 

training set (which contributes to connection weight changes), and a separate verification set. 

The training should stop when the network provides good results for both sets; if the error is 

still  dropping for the training set,  while it starts to rise for the verification set,  that is an  

indication of overtraining.

In the continuation, I will present several popular paradigms in the field of neural 

networks.

3.1.5 The Perceptron

One  of  the  most  popular  paradigms  among  those  of  supervised  learning  is  the 

perceptron – it  is  a  feedforward neural  network with (possibly)  shortcuts connections.  In 

analogy  to  the  morphology  of  the  eye,  this  network  has  a  layer  of  neurons  for  data 

acquisition, named retina, with statically weighted connections to the next layer of neurons 

with identity as activation function, followed by one or more layers with trainable weights 

and different activation functions. Since the second layer only collects the information from 

the  retina  (does  not  process  it,  due  to  the  identity  activation  function)  and  the  weights 

between that layer and the retina are not trainable, it is the second layer that is considered the  

input layer. A singlelayer perceptron thus contains, aside from the retina, only an input and an 

output  layer,  which  results  in  one  layer  of  trainable  weights  and  “switching”  activation 

functions. A multilayer perceptron contains additional (trainable) hidden layers.

The error of the network is seen as a function of weights and the differences between 

the teaching input and the network output. It is possible to derive this function, based on the 

activation functions, so the training consists in modifying the weights in the direction that 

minimizes  the  error  function.  In  the  multilayer  perceptron,  a  training  procedure  called 

backpropagation of error is applied: first, the weights of connections to the output layer are 

modified in the same fashion as in the singlelayer perceptron, but the error of the network 

also affects the weights of connections to the preceding layers, as they are modified according 

to the change applied to the weights of connections in the succeeding layer.

The  perceptron  is  used  as  a  function  approximator:  it  has  been  proven  that  a 

singlelayer  perceptron  can  arbitrarily  precisely  approximate  any  linear  function,  while  a 

multilayer perceptron can do the same for any function, and is thus considered a  universal  

function  approximator.  In  other  words:  if  there  is  a  function  that  defines  a  dependence 
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between one set of data and another set of data, a perceptron can be trained to “discover” that 

function on several examples of related pairs, and then provide a matching pair to an input 

data according to the learned dependency. Moreover, in regard to fault tolerance: even if an 

input pattern is inconsistent with itself (the elements are not in such internal relationships as 

exhibited by the training patterns), the network will output a pattern that would match a valid 

input pattern most similar to the actual one.

3.1.6 Recurrent Neural Networks

Recurrent neural networks may also be a subject to supervised learning. Within this 

class of networks there is a great number of paradigms, but some examples may be Jordan 

and  Elman networks.  Jordan network is  a multilayer perceptron with an additional set  of 

context neurons.  These are neurons that each receive information from one of the output 

neurons, and feed it back to all the input neurons. Elman networks are similar, but they have 

one  layer  of  context  neurons  for  each  information  processing  layer;  the  role  of  context 

neurons here is analogous to those of Jodan networks: each neuron in a processing layer is  

connected  to  one  neuron  of  the  corresponding  context  layer,  while  each  of  the  context 

neurons is in turn connected to all the neurons in the corresponding processing layer.

Such recurrent multilayer perceptrons contain internal state, which is said to store the 

context of the network as a whole (in case of Jordan networks) or the context of each separate 

layer  (in  the  case  of  Elman  networks).  A recurrent  network  can  compute  more  than  a 

feedforward network: if the recurrent weights were set to 0, the network would be reduced to 

an  ordinary  multilayer  perceptron.  Since  the  network  can  access  its  own  context  of 

processing, its structure embeds a notion of time, and hence recurrent networks have been 

applied often to problems of time-series prediction (predicting the next value based on the 

previous value). However, feedforward networks can also be used successfully for this type 

of  problems in the  following paradigm:  each input  vector  contains  a  moving window of 

several past values in succession, while the output is the next value to follow. Comparative 

studies have shown that a feedforward network can sometimes perform even better in time 

series prediction (Hallas and Dorffner, 1998), and are often used for simplicity of training.

It is more complicated to train recurrent neural networks due to internal loops. One 

common technique  is  unfolding in  time,  whereby the connections  to  context  neurons are 

broken, and a copy of the network representing its previous state is attached on top of the 
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context neurons (the output neurons of the copy become the context neurons). This procedure 

is  repeated arbitrarily many times,  to  account  for the effect  on the network of  a desired 

amount  of recurrencies.  Effectively,  we obtain a  feedforwad network,  which can then be 

trained  with  any  algorithm.  However,  this  greatly  increases  the  computational  cost  of 

training.  Alternative  methods  without  a  limit  on  the  recurrence  span  include  recurrent  

backpropagation,  derived  using  differential  calculus,  and  evolving  the  network  using 

evolutionary algorithms.

3.1.7 Hopfield Networks

John Hopfield developed these neural networks in inspiration by magnetism: particles 

move and rotate in a magnetic field in such a way as to reach an energetically most favorable 

condition, i.e. the lowest point of the energy function in relation to magnetic charges of other 

particles. In a neural network, the spin of the particles translates well into neuron activation 

state, and the state of energetic equilibrium into the state of minimized error. A Hopfield 

network is thus a completely linked network, where each neuron affects the activation of 

another  neuron  symmetrically.  Complex  dynamics  can  be  achieved  with  simple  binary 

activation  functions.  However,  despite  the  complex  dynamics,  it  has  been  proven  that  a 

Hopfield  network  will  eventually come to a  standstill.  Thus,  the input  to  the network is 

considered to be the initial activation to which the neurons are initialized, and the output the 

state of neurons after the network stops.

Since the neurons affect each other symmetrically, a positive weight on the connection 

between two neurons will force them towards the same activation state,  while a negative 

weight towards the opposite states. A weight of 0 signifies no effect on activation. Since input 

and output patterns are represented by neuron activation, the training consists of comparing 

all the pairs of values within a pattern, and adjusting the weight of the connection between 

corresponding neurons in the following manner: if the input values are the same, the weight is 

increased, otherwise it is decreased. This is repeated once for each training pattern. In the 

end, a weight is high if the two corresponding input values were the same for many patterns. 

Effectively, when the network is trained, a training pattern on the input will result in the same 

patterns returned as output (the network it will stop immediately). For any other input pattern, 

the closest matching training pattern will be returned.

This is called autoassociation, and hence autoassociative networks are primarily used 
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for pattern recognition and pattern completion. Conversely, by reversing the rule for updating 

the  weights  during  training  (decreasing  weights  for  equal  input  pairs  and  increasing  for 

opposing  pairs)  a  Hopfield  network  can  be  trained  for  heteroassociation.  This  way,  the 

network  will  associate  one  pattern  with  another  one,  which  works  similarly  to  human 

memory where a particular experience can trigger a memory of another.

3.1.8 Self-organizing Feature Maps

Self-organizing features maps or SOMs, developed by Teuvo Kohonen in the Eighties, 

are similar to Hopfield networks in that the output is the state of the network, but they can 

learn completely unsupervised. They are used to map a high dimensional input space into a 

topology of less dimensional space. For example, they can sort highly dimensional instances 

of input data into a line or a two dimensional grid according to similarity; similar data will be  

mapped to a position closer together than dissimilar.

It is possible to describe the structure of SOMs in already presented terms from the 

field of the neural networks, but a clearer description of their functionality may be given in 

slightly different terms. As said, the neurons are arranged into a low dimensional topology 

like a line or a grid, with equal spacing. Each neuron, however, is associated with a value of 

the  same dimension as  the  input  space,  and that  value  is  named  neuron center.  For  the 

purpose of training, the neuron centers are initialized with random values. When an input 

value is presented, a neuron is searched for which has its center closest to the input value – 

the winner neuron – and this neuron is said to be activated. If several neurons are in a tie, it 

does  not  matter  which  one  is  picked.  The  difference  between  the  input  and  the  winner 

neuron's center is then calculated, and added to the center of the winner and  the neurons in 

its topological neighborhood, in proportion to their topological distance from the winning 

neuron – the closer neurons are pushed more towards the input value than the more distant 

ones. The SOM learning is unsupervised in that there is no notion of error; the more samples 

from the input space it is presented, the better its neuron centers will represent a topological 

arrangement of the input space by similarity.

Finally, after the networked has learned enough, what is interesting is to present it 

with a new input and see which neuron is activated, rather than what is that neuron's value. 

We then know that the input values that previously activated this neuron, or the neurons in its 
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neighborhood, are similar. Naturally, we have to had somehow stored the previous items from 

the input space together with the information about which neuron they activated, and hence 

SOMs are typically used for associative data storage. This allows for context-based search 

where an input item retrieves items from the same or similar contexts.

3.2 Application of Artificial Neural Networks in Music

There is many fields related to sound and music where artificial neural networks are 

applied, including for example speech recognition, gesture recognition, music classification, 

musical score analysis, automated music performance, etc... I will present several examples 

of application that, in my view, are both particularly relevant to music performance as well as 

paradigmatic. They are mostly related to gesture recognition.

3.2.1 Early Examples

One of  the early reports  about  application of  artificial  neural  networks  in  gesture 

recognition is by Lee, Freed and Wessel (1991). They developed an object for neural network 

computation,  for  the  MAX  graphical  programming  language,  which  allowed  for  easily 

conduct experiments on the application of neural networks in the musical context. The MAX 

object implemented feedforward, as well as Jordan and Elman type recurrent networks. They 

applied it to recognition of gestures from a MIDI keyboard, the Radio Drum, the ZETA MIDI 

guitar, and the Lightning system for continuous spatial control.

In the case of the MIDI keyboard, a neural network allowed to map the keys number, 

velocity  and another  control  to  complex timbre  generated  by a  series  of  sinusoidal  tone 

generators.  This  a  very typical  application  where  a  small  number  of  input  parameters  is 

translated  into  a  complex set  of  parameters  for  sound synthesis.  Lee  et  al.  note  that  the 

mapping could have been done by traditional  translation functions,  but  a neural  network 

makes  the  work  less  time  consuming  for  humans  as  it  can  automate  the  search  for  the 

mapping function by interpolation of input points and generalization.

In the application on the Radio Drum (an array of antennas reporting the distance of 

transmitters attached to two sticks), a neural network was first used to map a highly non-
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linear response of the system to a linear 3D space correctly representing the coordinates of 

the sticks. Later, the 3D space was bypassed as the data from the system could be directly  

mapped to a gestural space, further reducing errors.

The  output  of  the  ZETA MIDI  guitar  was  first  analyzed  by traditional  means  to 

produce  data  about  the  tonal  center,  note  density,  note  variance,  duration,  and  melodic 

contour. A neural network was trained to recognize patterns in these features, and use this 

information to synchronize presentation of images.

The Lightning system featured  two infrared  transmitters  and a  receiver,  providing 

spatial coordinates of the transmitters. The gestures produced using the system were analyzed 

for curvature, symmetry and endpoint distance measures. A neural network was successfully 

trained on this data to recognize gestures, which, according to the suggestion of Lee et al.,  

could be used for interpretation of conducting gestures.

3.2.2 Le Groux: A Neural Network Principal Component Synthesizer

A similar approach to that of Lee et al., in regard to the MIDI keyboard was developed 

by  Le  Groux  (2002)  (under  supervision  of  Wessel  himself),  albeit  with  one  important 

difference: the neural network does not operate on the data extracted directly from the gesture 

(or MIDI control information), but instead on the features extracted by analyzing the sound 

produced by an acoustical instrument. The training procedure goes as follows: a recording of 

a performance on an acoustical instrument is subjected to additive harmonic analysis and then 

further processed to produce what Le Groux calls  perceptual controllers: information about 

pitch,  loudness,  brightness,  etc.  These  were  “chosen  in  order  to  correspond  to  human 

perceptive criterions and are relevant for musical applications.” (Le Groux, 2002, p.18) The 

neural network is then trained with this control data as training input, with the corresponding 

raw harmonic analysis data as teaching output (i.e. desired output). The output could then be 

used to drive additive synthesis in order to resynthesis the original sound.

Why is this useful? According to Le Groux, the relationship between the abstraction 

by perceptual controllers on one hand, and the detailed sound data in terms of harmonic 

spectrum on the other hand, conveys the performer's musical style and identity. Because the 

neural  network  learns  the  internal  relationships  within  the  sound  data,  it  is  possible  for 

example to play a different melody than the one used at training by supplying a different time 
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series of perceptual controllers (for example using a MIDI control device), while preserving 

the identity of the original performance.  Le Groux describes an experimental  example in 

which  an  original  melody  played  by  Coltrain  on  the  saxophone  was  changed  while 

supposedly preserving Coltrain's style. Moreover, since the system takes abstract perceptual 

controllers as input, instead of raw controller data, it is possible to use any controller, given 

that a mapping from its control outputs to perceptual controllers is done. It is possible, for 

example, to play the sound of the saxophone with a flute-style controller.

I  see several  issues  in  understanding Le Groux's  intentions.  Firstly,  we could  ask 

whether the spectral information can really convey a performer's style. Le Groux does not 

give any justification for that. Furthermore, he suggests that this system “provides a musician 

the  opportunity  to  cultivate  his/her  style”  (Le  Groux,  2002,  p.7),  while  “the  often 

standardized  nature  of  the  available  tools  limits  the  musician’s  expressive  control.”  (Le 

Groux,  2002,  p.7)  In  accordance  with  my  exposition  of  the  issues  related  to  music 

performance in the second chapter, he states:

This limit is particularly problematic since musicians are appreciated and recognized 

for their style. During many long hours of training, a unique relationship develops 

between the musician and his/her acoustic instrument. The physical properties of the 

instrument combined with the musician’s individual personality, skills, and creativity, 

result in a specific playing style. This interaction is the foundation for a musician’s  

identity, essential for listener recognition and enjoyment. (Le Groux, 2002, p.7)

However, does his system really support the development and cultivation of one's own style? 

As far as it is apparent from his description, even if the system is really successful in what it 

does (preserving skill, style and identity), then it allows one to play more sloppily and obtain 

the  same  musical  results  as  used  in  the  training  data.  This  is  supported  by  Le  Groux's 

suggestion of the system's usability for studio corrections of recorded material. I can see how 

this can provide a musician with reflection on own errors and catalyze correction of pure 

gestural technique (getting the pitches right), but it seems that what it really does is to isolate 

the gestural control - the performer's active engagement - from the style, and prevent the 

latter's  modification,  and  hence  any  development.  Simply  stated:  preservation  opposes 

change, and this approach seems to opt for the former.
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3.2.3 The Wekinator

Another  recent  example  of  artificial  neural  networks  used  for  gesture-to-sound-

synthesis mapping is a recently developed software named the Wekinator (Fiebrink, Truman 

and Cook, 2009; Fiebrink, 2011). This software offers a wider range of machine learning 

algorithms (others aside from neural networks), with one important intent: it focuses on the 

ability of a performer to create a highly personalized mapping between gestures (tracked by 

any kind of controller that can interface with a computer) and sound synthesis parameters. 

The emphasis is on an individual performer developing the machine learning scheme entirely 

on  their  own,  for  their  own purposes  and for  a  single  performance/composition.  This  is 

therefore an approach that fits well under the paradigm of “instrument composition” (Murray-

Brown et  al.,  2011) that  I  have  presented  in  the  second  chapter.  A lot  of  attention  was 

therefore given to the design of the user interface, which was developed with the help of 

feedback evaluations  by various  performers  using  the  software  for  customized  mappings 

employed in real performances. Fiebrink explains what these conditions imply:

Among the interactional affordances that were key to making standard supervised 

learning algorithms usable in this work were their low training time, their capability 

for building models for the chosen learning concepts using a small number of training 

examples,  their  fast  running  time,  and  their  ability  to  be  “steered”  in  different  

directions via users’ modifications to the training set. (Fiebrink, 2011, p. 367)

There is no demand for great generalization by the neural networks, since the scope of 

learning is much smaller than when trying to create a general-purpose gesture recognition 

system. Moreover,  due to great insight that the software offers into the machine learning 

process, the performer can adjust the patterns to be learned according to the feedback about 

the success of learning; if a set of patterns can not be learned, it can simply be adjusted. But 

most importantly, this provides the performer with the information about the consistency of 

their own actions and self-perception: a neural network can only learn to associate patterns if 

there is indeed an inherent connection, and distinguish them if there is an inherent distinction. 

If the performer tried to map what they believed is a prominent feature of their interaction 

with the instrument, but the feature was not conveyed precisely and clearly enough through 

the gestures, it would quickly show the neural network's inability to learn. The same holds for 
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the other side of the training: the target features of the sound synthesis to be mapped.

Due to the Wekinator's great flexibility and focus on rapid development of gesture-to-

sound mapping, Fiebrink et al. (2009) propose its usage in real-time performance, for on-the-

fly  machine  learning.  This  is  especially  supported  by  the  software's  ability  to  integrate 

playing and machine learning in a tightly unified process:

What  the  Wekinator  system encourages  is  a  high-level,  intuitive  approach,  where 

particular mapping “nodes” can be quickly defined via training examples and then the 

instrument  immediately  auditioned.  Rather  than  laboriously  mode-shifting,  the 

instrument builder now takes part in a playful process of physically interacting with a 

malleable complex mapping that can be shaped but does not have to be built from the 

ground up. Furthermore, the surprises that the mapping inevitably generates, while 

sometimes undesirable, are often inspiring. Being able to save these mappings and 

revisit them, perhaps modifying them on-the-fly in performance, allows for continuity 

but also continual evolution. (Fiebrink et al., 2009, p. 5)

The Wekinator used in on-the-fly machine learning in live music performance can embody 

the  three  instrument  design  principles  proposed  by Murray-Brown et  al.  (2011):  1.  The 

instrument  is  designed for an individual  performer,  for a single performance -  obviously, 

since the performance is an improvisation, but moreover the interactivity and the instrument 

itself are being designed during the performance. 2. The complexity of interactivity gradually 

increases as the performance develops. 3. Potentially, the element of surprise on the audience 

is absolute with every instance of the performance. But what is most valuable, in my opinion,  

is that the decision to begin with an almost empty interaction scheme is a  real constraint 

imposed  on  the  performer,  and  the  development  of  the  interactivity  comes  from  the 

exploration and gradual expansion of real limitations, as an answer to them. I suggest that this 

plays an important role also on the ability of the audience to understand the musical drama on 

stage.
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4. My Software and Musical Performance

4.1 Artificial Neural Network Extensions for SuperCollider

As  a  prerequisite  to  my  experimentation  with  the  application  of  artificial  neural 

networks in a computer instrument, I developed several software components that allow more 

efficient  use  of  feedforward  neural  networks  in  the  SuperCollider  environment  than  was 

previously possible. The components are a plug-in system for the SuperCollider language, a 

plug-in  for  the  language,  utilizing  this  system,  and several  UGens  for  the  SuperCollider 

synthesis server. Both the language plug-in and the UGens make use of the Fast Artificial 

Neural Network library (FANN). To my knowledge, this is the first implementation of neural 

network computation capabilities for SuperCollider that compiles into native machine code, 

and is thus computationally much more efficient than similar capabilities implemented in the 

SuperCollider language itself.

The SuperCollider plugin interface built into the latest stable version of SuperCollider at the 

time of this writing is available at:

https://github.com/jleben/supercollider/tree/topic/lang-plugins-3.5.2

The neural network extensions are available at:

https://github.com/jleben/supercollider-ann

Although the SuperCollider synthesis server has long supported plug-ins, the language 

has never had a plug-in interface, and it is not available at the latest version of the software. 
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Since the primary intention was to develop a natively compilable neural network extension 

for the language, this was a good incentive to enrich the language with a plug-in interface.  

The neural network capabilities could have been compiled directly into the language, but the 

ability to implement them in the form of a plug-in increased the maintainability of the code, 

while the effort to develop a general plug-in system naturally works towards the benefit of a 

larger community.

The language plugin implements a SuperCollider language class (named Fann) that 

represents a feedforward neural network. It is essentially an interface to a subset of the FANN 

library API.  It  allows to  create  feedforward  networks  of  arbitrary amount  of  layers  with 

arbitrary amount of neurons, with each layer fully connected to the subsequent layer. At the 

time of this writing, no shortcut connections are yet possible. Different activation functions 

can be specified for the hidden layers, and for the output layer, and this can be any activation 

function supported by FANN. The network is initialized with random weights, and can be 

reset into a new random state at any time. It can be trained using the FANN's default training 

algorithm, which is Rprop, or resilient backpropagation, an enhancement of the traditional 

backpropagation-of-error  algorithm.  The  training  can  be  performed  epoch-by-epoch,  or 

automatically until  a  desirably small  error  value is  reached.  The class  leverages  FANN's 

capabilities to save the complete state of the neural network into a file, and load a saved 

networked. This capability is also used as a way to transfer a trained neural network to the 

SuperCollider server, where it can be loaded by a UGen.

The  server  plug-in  contains  additional  infrastructure,  aside  from the  UGens.  This 

infrastructure allows for safe loading of neural networks saved to files, without interference 

with the audio computation. Loading data from files is not a real-time safe operation, as it 

never has a strictly determinable time of completion, and hence must not be performed on the 

same computing thread on which the audio processing runs, or it could take too long time and 

interrupt the audio. Therefore, upon receiving a specific synthesis server message from the 

language, the plug-in loads a neural network from file into one of the numbered slots in a non 

real-time thread, and takes care that a UGen instantiated on the real-time thread can access 

the neural network in a thread-safe manner.

Currently,  there  are  two useful  UGens implemented;  their  corresponding language 

classes are named AnnBasic and AnnTime. Both take a slot  index as the first parameter, 

which defines one of the slots at which they will try to access a loaded neural networks (if  
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any exists there).

The AnnBasic UGen operates at control rate. It takes an array of control rate inputs as 

the second parameter, of which each will be mapped to one neural network input. For the fact 

that the synthesis server architecture does not allow dynamic creation of UGen inputs and 

outputs after they are instantiated, the number of outputs is specified as the third parameter, 

and both this number, as well as the size of the input array at the second parameter must 

match the structure of the loaded neural network. The AnnBasic UGen thus simply maps its 

inputs and outputs to inputs and outputs of a neural network.

The AnnTime UGen,  however,  is  intended for  processing  of  a  time-series.  It  can 

operate both in control and in audio rate. As the second parameter it takes a window size (W, 

in continuation), and as the third parameter a single data input. It also has a single output. 

Internally, it contains a buffer of the size W where it stores W amount of past input values 

incoming on the data input. At every computational step (an audio sample at audio rate, or 

once per each control rate step) it presents the buffered input values as the input vector to the 

neural network, and after processing the network, forwards the network's output through its 

own output. For this UGen, the neural network denoted by the first parameter must match the 

specified window size in number of inputs, and must have one single output.

4.2  The Instrument and the Performance

I will describe the computer instrument employing the above presented extensions for 

the  SuperCollider  environment  that  I  used  in  my live  improvisation  performance  at  the 

Institue of Sonology on 18 April 2012.

The fundamental idea was to explore the way that neural networks - trained to analyze 

a particular simple input time series, and map it into into a more complex output time series - 

would modify the latter as the input was modified. Another starting point was that several 

such neural networks would be used to contributively shape various aspects of a common 

sound body, instead of several preceptively separated sound entities. Moreover, the definition 

of which neural network contributed to which aspect of sound, and in what amount, would be 

determined during the performance - starting with a very simple scheme, and then gradually 

increasing the complexity of mapping, applying a neural network to several aspects of sound, 

or several neural networks to the same aspect of sound.
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The neural network processing was performed at control rate, so the outputs of several 

neural networks were routed into another process as control data for sound synthesis. In this 

configuration, the sound synthesis served as a kind of sonification method for the output of 

the  neural  networks,  and I  was primarily interested  in  musical  features  conveyed on the 

control rate level. The sound synthesis was chosen to be traditional frequency modulation 

(FM).  The  reason  for  this  is  that  the  FM  technique  has  a  well  defined  paradigm  for 

construction of an FM graph consisting of individual sinusoidal oscillators, whereby one or 

more oscillators are summed together to modulate the frequency of another oscillator. This 

lent itself  well  to the idea of mapping the neural  network outputs to  different  aspects of 

sound: this was accomplished by applying the neural network outputs to carrier frequencies 

or modulation indexes of various parts of the FM graph. New mappings could be established 

or old one broken during the performance.

The most interesting part, however, was happening in relation to the neural networks. 

They were trained to map one period of a sinusoid as a time series to a different, arbitrarily 

complex time series. When a sinusoid of the same frequency as used in training would run as 

an input into such a neural network, the situation was equivalent to the teaching input (see 

chapter 3.1.4) being stored in a table, and the network input playing a role of a running phase 

for table lookup. In this case, the whole system can be seen as analogous to a wavetable  

oscillator. However,  when specific kinds of slight modifications to the input signals were 

introduced, the output would be nonlinearily modified. Now, one can ask immediately: why 

not simply perform a table lookup with a nonlinear phase function? The reason is that this  

would require one to  produce the nonlinearity in the phase function. On the other hand, a 

simple offset (addition of constant value, or DC) of the input signal into the neural network 

would already produce nonlinear modifications of the output. And the amount of offset thus 

becomes a powerful parameter to be exposed as a physical control.

In other words, the above paragraph simply states that the whole system observed 

with  the  sinusoid  offset  parameter  as  an  input,  and  the  neural  network  as  an  output,  is 

nonlinear. So the question arises, why this particular nonlinear system, and not any other? I 

found this system particularly interesting. I will describe several interesting behaviors that I 

observed. When I speak of change in the input signal, I refer to change in relation to the 

signal used at training:
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• When changing the frequency of the input sinusoid the wavetable oscillator analogy 

would  still  hold:  the  output  would  mostly  just  change  its  fundamental  frequency 

proportionally,  but  preserve  the  shape  (i.e.  relative  amplitudes  and  phases  of 

harmonics).

• When decreasing the amplitude of the input, the output would attenuate accordingly. 

However, when increasing the amplitude, the features of the output would seem to 

amplify,  but  preserving  the  total  energy.  The  slopes  would  get  steeper  without 

affecting the peaks. This was due to the fact that such neuron activation functions 

were used which have a bounded range, and can not possibly output values outside 

that range.

• When adding offset to the input, the various features of the output would seem to shift 

in time in different directions, as if we were changing phases of groups of partials.

• When adding sinusoids of different frequencies on the input, the output would reflect 

corresponding different periods, akin to combining several instances of the original 

signal at different frequencies, but in a manner more complex than summing.

The final system used in the performance featured four neural networks trained in the 

manner  described  above.  Each  neural  network  had  two  oscillators  plus  an  offset  value 

summed together as the input. During the performance, the oscillators were being tuned in the 

range between 0 and 20 Hz. On the sound synthesis side, there were four predefined FM 

graphs. The outputs of each neural network could be applied to either the frequency or the 

modulation index control at various points in any of the FM graphs, in various amounts.

A lot of parameters were controllable  using a physical controller  (either  faders  or 

rotary knobs). A mapping between a neural network output and a point in an FM graph was 

established  by means of pressing two physical buttons (one for source and one for target 

selection). The amplitudes of the oscillators and the offset values were the most used controls 

in the performance; they provided a kind of gestural control,  so they were the only ones 

controllable with faders. The carrier frequencies and amplitudes of the final oscillators of the 

FM graphs (providing audio output)  were controlled using  rotary knobs.  And finally the 

amount  to  which  the  neural  networks  would  affect  the  mapped  parameters  of  the  FM 

synthesis were controlled using rotary knobs.  The frequencies of the oscillators had preset 

values,  and  not  changed  often  during  performance,  so  they  were  only  controllable  in 
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software.

The neural networks were trained with newly generated patterns as teaching inputs 

just before the performance, each with a distinct pattern (or table, to repeat the wavetable 

oscillator analogy). At the start of the performance, there was no mapping between a neural 

network and the FM synthesis established. The amplitude of only one oscillator per neural 

network was set to 1, the other oscillator and the offset to 0. This ensured that when a neural  

network was mapped and activated, it would first produce the exact pattern used in training. 

The initial patterns provided a point of departure for exploration. As I had not trained 

with  these  exact  patterns  before,  it  was  unpredictable  how  exactly  they  would  change 

according to the input controls, although I knew the general principles listed above. It was 

intriguing, however, that the change was dependent on the content of the patterns themselves. 

It was the inherent features of the patterns that the networks learned, and that was what they 

operated  on.  As  the  deviations  were  gradually  introduced  during  the  course  of  the 

performance,  I  would  learn  increasingly  more  about  the  patterns.  The  performance  was 

therefore a play between the moments of stepping into unknown, learning more about the 

response of the system, integrating that knowledge into the total sound world, and repeating 

the same again.
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Conclusion

The  introduction  of  the  computer  into  the  music  performance  has  brought  a 

considerably  different  dynamics  onto  the  stage  than  those  seen  at  a  performance  with 

acoustical instruments. With the computer taking a lot of autonomy in contribution to the 

music, the notion of the performer's skill and virtuosity has suddenly lost ground. Questions 

about what is a performance at all have arisen.

It appears that the discourse about this issues has been drastically intensifying over the 

last couple of decades, and it is certainly extremely active at present. Throughout all this 

time, the question of virtuosity has been in the center of attention. While it seems that we can  

not do away with the term, the term itself may be changing meaning.

It  is  important to realize that the issue of virtuosity in relation to the computer is 

twofold: on one hand it is the issue of distancing of musical output from the control of the 

performer; on the other hand it is the issue of rapid development and invention of novel 

instruments, so that a paradigm of use does not have time to form. In this view, the notion of  

virtuosity does not have space while it is considered as something static, accumulating over 

the course of one's life or history as a sediment. When the only constant is reinvention of the 

instrument, we are in a constant state of learning. The skill supporting virtuosity must become 

the skill of learning.

In my conclusion, an approach to music performance that takes the development and 

the exploration of a new instrument as the musical topic in itself may pull the discourse about 

virtuosity in a favorable direction. Aside from providing a clear enough meta-paradigm, that 

allows for actual development of a new kind of virtuosity, it also has the potential to engage 

the audience in a shift towards a better appreciation of the music.

I can identify my employment of artificial neural networks for the purpose of musical 

improvisation as a small attempt within this paradigm. In its core it embodies an exploratory 
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interactivity  scheme,  and  invites  to  exploration  on  the  basis  of  constraint,  rather  than 

abundance.

However, I see a lot of room for improvement, especially in regard to two topics:

1. Making the neural network implementation efficient enough to run a satisfying amount of 

neural networks at audio rate. The purpose of this would be to let the neural network have 

more direct control on the audio output, and thus convey more of its operation through sound.

2.  Improving the physical control:  decreasing the dimensionality of human control inputs 

or/and a different kind of physical controller could yield a great improvement in interactivity.
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