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7.2. Piz Palü and Piz Zupò . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

7.2.1. General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

7.2.2. Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
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1. Introduction

Computer music is a diversified field. With the introduction of the computer into the

general practice of production in most genres of music it has also become a term which

is inherently vague. Therefore, it is necessary to limit the frame of the discussion for

this text.

In this text, I will not give a historic survey of the development of computer music

systems, as there are already numerous articles and books dealing with this subject1.

Rather, I will try to connect with two composers, Iannis Xenakis and Gottfried Michael

Koenig, whose thoughts and music have had a profound impact on my own music as

well as a composition program I have developed and will present in the second part of

this discussion. Moreover, I have chosen to focus on these composers because of their

approach and method towards dealing with technology. Technology is fundamentally an

extension of our own natural faculties, which can facilitate the discovery of new possibili-

ties. Given that the computer is a “mental extension” requiring formal externalization of

mental processes it may stipulate abstractions and generalizations of musical concepts.

In the diverse and divergent works of Koenig and Xenakis, there is a point of intersec-

tion that deals with abstraction, generalization, and externalization of mental processes,

which is already inherent in both composers’ pre-computer work. Essentially, it is at this

point of intersection where it is most interesting to consider the role of the computer,

where I believe their work critically embraces technology, not from an engineer’s point

of view, but from the point of view of a thinking composer.

With regard to the first part of this text, I will refer to other people’s opinions.

However, I want to clarify that I do not intend to depict or demonstrate the conceptual

edifices from which they stem and I will not give a full account of the theories of both

composers. Instead, I will try to present a view of my own, while setting thoughts

which influenced my work, in a light that will inevitably be shaded by my own biases.

1The reader may, for example, refer to [LA85], [Ame87], or [Man81].
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1. Introduction

In essence, as Goethe said, “es ist äußerst schwer, fremde Meinungen zu referieren,

besonders wenn sie sich nachbarlich annähern, kreuzen und decken.”2[Goe10]

My goal in this discussion will be to trace out some fundamental motivations for using

the computer in music composition and while doing so I will at least allude towards some

of their consequences. Furthermore, I will attempt to present a view of the role of the

computer in composition as a tool of cognition in a an empirical process of inquiry.

Chapter 2 – Composition Processes Dealing with general issues pertaining to the use

of the computer in composition processes, especially in regard to the works of

Iannis Xenakis and Gottfried Michael Koenig, I argue that the the computer in

the realm of composition acts as a tool of discovery facilitating a speculative process

of inquiry.

Chapter 3 – Model and Music Discussing two historic works, which have been com-

posed with the help of computer programs: Gottfried Michael Koenig’s Übung für

Klavier and a series of pieces by Iannis Xenakis, here referred to as the ST pieces.

Chapter 4 – The Design of CompScheme Discussing my program CompScheme, its

general design and primary event producing mechanism, streams. Several general

design ideas of the system are illustrated by short examples.

Chapter 5 – The Event Model Explaining CompScheme’s event type model; starting

from simple examples of bundling parameters together in events, moving on to

defining event types and concluding with interpreting events as higher-level struc-

tural constructs. The event model is illustrated by examples of controlling the

SuperCollider server in real-time and modeling structure 1 of Koenig’s Übung für

Klavier.

Chapter 6 – Stochastic Synthesis in CompScheme CompScheme’s module for stochas-

tic synthesis is presented as an attempt to find a generalization and possible ex-

tensions of the works of Xenakis and Koenig in this particular field of study. I will

then try to show that the flexibility and expressiveness of streams lends itself well,

not only to the description of higher-level compositional processes, but also to the

lower-level sound production.

Chapter 7 – Bellavista I,II, and III Using a series of three pieces of mine, which were

realized using my program CompScheme, for fixed-medium Piz Palü and Piz Zupò

2English translation: “It is most difficult to lecture on other people’s opinions, especially when they
converge, cross and coincide.”
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and a piece for solo piano called Piz Bernina, I will discuss methods of sound

synthesis, the pieces’ material and their structure.
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Thoughts
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2. Composition Processes

Der Komponist lehrt den Computer verstehen und

sprechen; was der Computer sagt, zeigt dem Kompon-

isten, was er selber verstanden hat und aussprechen

konnte. [Koe93a]

Gottfried Michael Koenig

2.1. Introduction

Computer music systems mediate between the composer’s intentions and the resultant

musical work. The interposition of the computer in the composition process entails a

transformation of the composer’s intentions. As figure 2.1 shows, the composer’s task is

it to first transform his or her intentions into rules and input data, which the computer

system can then process. The computer then can execute these rules and offers the

means for analysis and introspection. Consequently, the resulting output influences the

composer’s intentions once again, causing the composer to re-formulate his intentions

in terms of rules and data, due to the fact that the computer alters the way in which

representation occurs.

Using the computer in the composition of music raises fundamental questions about

musical composition itself. Specifically towards the activity in which the computer is to

be embedded, the composition process. However, by their very nature, these questions

tend to escape attempts of being definitively answered. The term composition process

as well as the term musical composition are both vague and have manifold definitions.

By Musical composition one can mean the printed notation of a piece of music, its

performance, the resulting sound, or the production of a ‘score’ intended to be played

by acoustic instruments or realized by electronic or digital means. By composition

process one generally understands the composer’s activity to be the production of a

7



2. Composition Processes

Figure 2.1.:

piece of music, ranging from preparatory work to the actual realization of the piece.

The nature of this activity, however, differs from composer to composer; from piece

to piece, and it is thus difficult to generalize. As composer Horacio Vaggione states,

“music composition processes can be envisioned as complex systems involving a plurality

of operating levels.” Any closed definition of music or music composition including

the seemingly all-embracing “music is everything we call music” inevitably leads to a

reduction. Nevertheless, it is every piece itself and the composition of it which tries

to form an answer; it unfolds its own “creation principle.” [Vag01]. However, one ca

discriminate between music and composition; as Herbert Brün enunciates, “music is

traces left by composition.”[Roa85, page 4] In this text, I will adopt this difference and

understand the “composition process” as an open and investigative activity that is not

geared to a specific predetermined outcome, and whose principles are unfolded in the

resulting music.

As Adorno says, a musical work can be seen as a “thesis”: “Everything that might

appear in music as being immediate and natural [. . . ] is, in reality, the result of a

‘thesis’; the isolated sound cannot escape this rule.” (Adorno qtd. in [Vag01]) If one

accepts Adorno’s notion of a musical work as a “thesis”, a musical antithesis is always

imaginable, and in fact the history of music has shown that the reversal of assumed

musical universals has often led to musically successful works. Therefore, prescriptive

theories of musical composition generally become limitations, rather than benefits.

In this chapter, I will take a look at ideas of composition processes, methods, and

the way in which computer can take part in the construction of composition models. In

doing so, I will rely heavily on the theoretical works of the composers Gottfried Michael

Koenig and Iannis Xenakis. Although situated in different contexts, both composers

have approached the computer due to its suitability for constructing and testing models.

8



2.2. Compositional Methods

However, the computer itself was not the primary attraction for these composers, rather

their axiomatic approaches naturally lent themselves well for programmatic implemen-

tations.

2.2. Compositional Methods

The computer requires a formal and unambiguous formulation of procedures, which

leads the designer of a system or a composer working with the computer to a conscious

thinking about his or her work flow and an abstract reflecting on compositional methods.

The development of a piece of music, whatever its initial intentions, must be broken

down into a sequence of describable operations. A computer music system provides the

composer with means of representation and relation, with which he or she can form

this sequence of operations. The system thus states a certain idea of the compositional

process, by the operations, means of combination, and means of abstraction it offers.

Thus, the problem arises, how an open and investigative composition process, which is

not aimed at realizing predetermined results, can be modeled with means, which demand

unambiguity and purposefulness. The question then becomes, how does an algorithm

act as a compositional tool. According to Koenig, compositional rules can be derived

in three ways: by the analysis of existing music, by introspection (i.e. analysis of the

composer’s own experience), or by the description of a model that is remote from analysis

or introspection and instead emphasizes synthesis. I believe, that analytic models tend

to stress a notion of purpose, in that they aim at modeling or deriving rules from existing

music, therefore, they are contrary to my understanding of the composition process being

a speculative and open-ended activity. This problem can only be solved when rules are

used in a speculative way, having an axiomatic role whose consequences are then to be

assessed on the basis of an audible result. As Koenig says, “the analytical task–given

the music, find the rules–is reversed: given the rules, find the music.”

Xenakis sees laws not as an “end in themselves” but as “tools of construction and

logical lifelines” [Xen92, page 16]. Similarly, Koenig states that, “rules abstracted from

music by means of analysis, introspection or model construction result primarily in the

acoustic (or graphic) equivalent of this abstraction; the relation to music has to be

created again.” [Koe78]. For both composers the application of rules and the unfolding

of compositional methods has not been an attempt to formalize music, but from my

perspective is rather an inquiry into the question: “What is the minimum of logical

constraints necessary for the construction of a musical process?” [Xen92, page 16]. This

9



2. Composition Processes

in turn leads to the question: which musical processes can be modelled by “logical

constraints”? Both Koenig and Xenakis have formulated generalizations of composition

methods, some of which I will discuss in this chapter.

2.2.1. Koenig’s “Composition Processes”

In his article “Composition Processes”, written in 1978, Gottfried Michael Koenig de-

scribes four generalizations of compositional methods. Interpolation is a top-down

method, which “pushes forwards from the outer limits of the total form into the inner

areas,” in contrast to extrapolation, a bottom-up method, which “would proceed from

the interior towards the outside.” Despite their contrasting approaches both methods

overlap at a central point; the connection of an outer formal shell and its inner detail:

“Both methods are concentric; [. . . ] the relation of the detail to the whole is always

quite clear to the listener.” A third method Koenig calls “chronological-associative” in

which every element is “given its irremovable place in time” and the “composing process

unfolds along the time-axis.” The fourth method is a combination of methods in the

“composition of blocks”, each of which constitutes an independent section arranged in

sequence or in parallel. Koenig states that an approach which comes closest to the “real”

processes of composition is an extended form of the “chronological-associative” method,

which includes feedback:

Here the composer supplements individual data and syntactic rules describ-

ing only local strategy by objectives with which local events are continually

compared. This type of method seems to approach most closely the real

process of composition, but it also involves the greatest difficulties of repre-

sentation in program structures.[Koe78]

The fact that Koenig deems this extended chronological-associative method the most

difficult to model in program structures is an interesting aspect with regard to the

development of computer music systems.

2.2.2. Xenakis’s “Fundamental Phases of a Musical Work”

In his book Formalized Music, Xenakis described the “Fundamental Phases of a Musical

Work”, which shows a composition process; generalized by introspection, i.e. derived

from observation of his own experience. It is not a discussion of different compositional

10



2.3. The Role of the Computer

methods, but rather the description of a work flow; the construction of a musical work

as a sequence of operations.

1 Initial conceptions intuitions, data
2 Definition of the sonic entities sounds, instruments
3 Definition of transformations relations, manipulations
4 Microcomposition functional relations of the elements of 2
5 Sequential programming of 3,4 the schema and the pattern of the work
6 Implementation of calculations verifications and modifications of 5
7 Final symbolic result e.g. notation, graphs
8 Sonic realization performance, playback

Table 2.1.: Fundamental Phases of a Musical Work (taken from [Xen92])

It is notable that Xenakis mentions intuition at the outset of the list. The math-

ematical and formal methods with which relations, manipulations, and schemes are

constructed are then an “extension of intuition.”[Xen60] Concerning the use of the com-

puter, Xenakis says, “this list does establish ideas and allows speculation about the

future. In fact, computers can take in hand phases 6. and 7. and even 8.” [Xen92, page

22] And indeed, Xenakis developed a computer program, whose general outline follows

the list, which is described in section 3.3. It is interesting to notice that Xenakis permits

permutations in the order of the list and — as does Koenig with his idea of an ex-

tended “chronological-associative” method — includes feedback into the process. Thus,

both composers point towards open systems, which enable the composer to dynamically

rearrange the work flow as the processes is unfolding.

2.3. The Role of the Computer

Today, in the industrialized part the of the world, the computer is almost ubiquitous in

music production and it fulfills different roles in various contexts. In the scope of this

discussion, it is not necessary to investigate all of these roles, rather I have chosen to

concentrate on the role that the computer has in the algorithmic composition of music.

Even within this field, the computer assumes many different roles in the composition of

music. Composition programs have been developed to generate entire pieces of music

such as Hiller and Issacson’s Illiac Suite [HI59] or to “solve particular structural prob-

lems” [Koe93b] such as Koenig’s Project 1 . Whatever the intention of a composition

program is, the user or composer faces certain implications of the integration of the

11



2. Composition Processes

computer into the composition process. It should be notes that the general-purpose

computer was not designed to be a musical instrument nor to be a tool in the composi-

tion of music. For this reason, the representation of music and the development of music

composition systems raise fundamental questions about the role the computer plays in

algorithmic music composition.

Despite the vagueness of the terms and the impossibility of clear definitions, musical

composition always deals with representations and manipulations of some data on a

variety of levels of representation. A look at the history of musical notation shows

that the development of musical representation is directly linked to the development

of musical composition itself. A representation of music is an idea of what music is

composed of and consequently a manifestation of the available possibilities of composing

music.

Any musical representation performs a selective abstraction; it establishes relations

between things. Instead of operating with “real” objects, the representation enables an

operation on signs, which abstract and generalize the multifaceted layers of a reality

and let certain aspects of it emerge clearly. Operations within symbolic systems are an

integral part of musical composition, and in fact are critical to any artistic creation.

2.3.1. Formalizing Music

In the last hundred years, theoretical and compositional aspects of musical thought

have been influenced by the growing impact, complexity, and expressiveness of formal

ways of thinking. Prior to the advent of the computer, however, there have been no

formal languages in music, and the question remains as to what extent music can be

formalized. The term Formalized Music has become a buzzword for the connection

of mathematics and music, since the publication of Iannis Xenakis’s book with the

identical title. It is, however, a somewhat misleading term. As Xenakis has stated,

mathematics is an “extension of intuition.” [Xen60] Xenakis has used the term with

reference to fundamental research in mathematics. His use of axiomatic methods and

the construction of models in composition have not been an attempt to construct a

mathematical formalization of music, but rather an effort in trying to apply the principles

of building models (Prinzipien der Modellbildung) from mathematics in the construction

of a fundamental research of music (musikalische Grundlagenforschung). Besides the

formal nature of some musical abstractions and the fact that historically algorithmic

procedures have played a role in the composition of music, the computer and the way of

thinking it demands has changed the way we understand music. As composer Herbert

12



2.3. The Role of the Computer

Brün formulates, the computer demands composers to envisage their ideas as systems:

Composers may think of themselves and their minds and their ideas in any

way they please, until they decide to use the computer as an assistant. From

that moment on, composers must envisage themselves, their minds and their

ideas as systems. [Brü04, page 177]

Provided a composer does not wish to work purely based on some concept of “inspi-

ration”, or based on a learned routine, such as in the reproduction of a historic style,

he or she has to think consciously about the necessary testing grounds and experiments

in order to realize the composer’s “artistic intentions”. This type of groundwork has

to be described in some form, regardless if a composer believes his or her intentions

are removed from “rules” and “models”. Nevertheless, a composition can emanate from

both relations and experiences, which can be expressed formally and those which escape

this type of description. Horacio Vaggione writes:

Abstractions of musical ideas are manifested in myriad ways and degrees,

one of which is of course their suitability for implementation as algorithms,

enabling musicians to explore possibilities that would otherwise lie out of

reach. [Vag01]

Thus, the computer, which demands formalization, helps to reveal which musical ab-

stractions can and which cannot be formalized. The formalization of certain aspects in

a musical composition can provide the composer with a world of new possibilities. A

purely formal approach, however, is limited and “formal rigor does not always result

in musical coherence.” [Vag01]. The goal of formalization in music can therefore only

be to facilitate the discovery of previously inaccessible possibilities for the composer.

Moreover, a musical result may not exhibit a rule-based or formal character, yet the

work process from which it emerges is describable, for it can be discriminated between

music and composition. Computer-aided algorithmic composition of music entails a for-

malization to some degree, simply by the unambiguity and generalization the computer

demands. However, this should not be understood as an attempt to formalize music. If

it can be said that formalization takes place to a certain degree then it is in composition,

not in music.

13



2. Composition Processes

2.3.2. The Computer as an Erkenntniswerkzeug

Given the impossibility (and futility) of a complete formalization of music, what role

does the computer play in a composition process and what is gained by its use?

Every art form addresses perception and imagination, just as the objects in our

environment do. Nevertheless, artworks differ from “natural objects” in that they

(to put it in Hegelian terms) mirror the thinking consciousness by an externalization

(Entäußerung) of its content. That is, art as an external object presents itself to the

mind as a manifestation of mental activities. By a reflection on our consciousness in

the object and a reflection on the object itself it creates an elevation of consciousness.

Art is thus seen as a mode of cognition (Erkenntnis) and has primarily to do with a

“revelation of truth” (Entfaltung der Wahrheit) (G.W.F. Hegel qtd. in [Ado49]). I do

not wish to advocate the idea of a universal, absolute “truth”, but would rather like to

connect with Hegel’s notion of art as a mode of cognition (Erkenntnis).

The American philosopher Nelson Goodman sees aesthetic experience as cognitive

experience and the arts, just as the sciences, “as modes of discovery, creation, and

enlargement of knowledge,”[Goo68, page 102] i. e. understanding. Goodman claims that

the arts, just as the sciences, deal with symbol systems:

The difference between art and science is not that between feeling and fact,

intuition and inference, delight and deliberation, synthesis and analysis, sen-

sation and cerebration, concreteness and abstraction, passion and action,

mediacy and immediacy or truth and beauty, but rather a difference in dom-

ination of certain specific characteristics of symbols.[Goo76, page 264]

Music has had a unique position among the disciplines of art, in that it naturally

escapes reification. Music has not served clear representational purposes, it is difficult

to determine its “material”, and since music had been bound to performance, it had not

been tied to any physical object prior to the invention of the phonograph in the late

19th century. The relationship of matter and thought in music is less clear, thus musical

works have always been to greater extend conceived of as mental representations. In his

book Art as Experience, John Dewey describes the relationship of matter and thought

and art and science with regard to the creative act

The odd notion that an artist does not think and a scientific inquirer does

nothing else is the result of converting a difference of tempo and emphasis

into a difference in kind. [. . . ] The artist has his problems and thinks as he

14



2.3. The Role of the Computer

works. But his thought is more immediately embodied in the object. [. . . ],

the scientific worker operates with symbols, words and mathematical signs.

The artist does his thinking in the very qualitative media he works in, and

the terms lie so close to the object that he is producing that they merge

directly into it. [Dew34, page 14]

Dewey associates the scientists work with “symbols”, whereas he sees the artist’s

thoughts directly linked and embodied in the object. He could not foresee the invention

of the computer as an instrument for art based on “symbolic matter”, but he stresses

that there is no “difference in kind” between the thinking of the artist and the scientific

inquirer. In music, where the process of creation takes place largely in a non-material

world, in which the “material” is per se symbolic (free of an object carrier), the sym-

bolizing ability of the computer renders it to be a natural extension of the artist’s

collective resources. The interposition of the computer in the compositional process

entails an introduction of a symbolic representation that mediates the construction of

the composition. In contrast to earlier methods of representation in music, i.e. notation,

the computer shifts interpretation from the product-oriented music notation to process-

oriented programs; notation and production method merge in a work process featuring

a cyclical interaction.

In his article “Computer-Verwendung in Kompositionsprozessen” Gottfried Michael

Koenig describes the relationship between composer and computer:

Der Komponist kann der Frage nachgehen was eine Regel ist, [. . . ] auf welche

Weise verschiedene Regeln sich beeinflussen. Der Komponist lehrt den Com-

puter verstehen und sprechen; was der Computer sagt, zeigt dem Kompon-

isten, was er selber verstanden hat und aussprechen konnte.1 [Koe93a]

This quote contains three important general ideas about what is gained by using com-

puter programs in composition processes: the idea of rules as something that can be

formulated in terms of a computer program, the idea of composing with inter-dependent

rules that influence each other, and the general approach of pursuing a question. The lat-

ter is of capital importance in that it describes a fundamental motivation for formulating

musical ideas in terms of rules; an inquiry into composition.

1English translation: “The composer can pursue the question what a rule is, [. . . ] in which way
different rules influence each other. The composer teaches the computer to understand and speak;
what the computer says shows the composer what he himself has understood and could express.”
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In a similar line of argument, but from the point of view of computer music language

designers, Roger B. Dannenberg, Peter Desain, and Henkjan Honing write in their paper

“Programming language design for music”:

Implementing ideas on a computer often leads to greater understanding and

insights into the underlying domain. Programming languages can be devel-

oped specifically for music. These languages strive to support common musi-

cal concepts such as time, simultaneous behavior, and expressive control. At

the same time, languages try to avoid pre-empting decisions by composers,

theorists and performers, who use the language to express very personal con-

cepts. This leads language designers to think of musical problems in very

abstract, almost universal, terms. [DDH97]

As a question about rules is pursued, the composer defines such rules and will then

see their consequences, and will then gain insight into the nature of the rule and his or

her own understanding. By the abstraction the computer demands, the idea of musical

problems is augmented and through interaction the computer can become a source of

compositional ideas. Rather than being a passive, mechanically executing medium, a

programming language can inspire musical ideas; as John Chowning states in an inter-

view with Curtis Roads:

More and more, the musical idea evolves from a kind of cyclical interaction

with the language. One asks something of the language and it yields more

than you asked for. That’s not surprising since the language represents

thousands of years of thought about thought. [Roa85, page 23]

The computer is seen here as an extension of mental activities, a tool for gaining

knowledge. The goal is not to derive rules from existing music, i.e. to formalize music,

but to use the computer in an exploring process of inquiry. Herbert Brün formulates

this distinction felicitously with regard to sound synthesis:

It is one thing to aim for a particular timbre of sound and then to search for

the means of making such a sound and timbre audible. It is another thing

to provide for a series of events to happen and then to discover the timbre

of the sounds so generated. [Brü69]

Only in a real examination of the medium and its possibilities can the computer find a

useful place in music. The use of the computer enables the composer to experience “mu-

sical form as a process”[Koe93c], not only in listening, but in a work process. Computer
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music programs require the construction of models on two levels, they form a model

of the composer’s workplace and a generalized model of composition. The computer is

thus not merely a practical tool, used for its computational performance, but becomes

an Erkenntniswerkzeug.

2.4. Interpretation

The use of algorithmic methods in the composition of music constitutes an external-

ization of a part of the composition process. As stated above, depending on the initial

intentions not all parts of this process may be externalized equally well. In computer-

assisted composition the computer is not only used for the mere production of sound, but

involved in the processing of abstract signs and relationships. The computer is included

in a phase of planning and may also be part of the final realization. The output of a

computer program may also be translated into performance instructions which are re-

mote from the program itself, specifically in the algorithmic composition of instrumental

music. In any way, there is a translation of the output data into an aesthetic object, i.e. a

musical performance, be it the playback of a tape, a performance by instrumentalists or

another form.

Gottfried Michael Koenig terms this process “aesthetic integration”[Koe93d]. As

Koenig argues, the process of “aesthetic integration” is a consequence of algorithmic

composition:

Die Algorithmen verkörpern die allgemeine Idee eines Stückes, während die

musikalischen Daten nur abstrakte Beziehungen unterhalten und die Ausar-

beitung der Partitur unterstützen, die diese Beziehungen konkretisiert.2[Koe93d]

In this way the composer himself becomes an interpreter of the material, with which

the externalized process has provided him. The distinction between the “general ideas”,

“musical data”, their interpretation, and their concretization elucidates the various steps

in the composition process in which the computer is differently engaged. On the one

hand this distinction is often blurred, as can be seen in many recent computer music

systems, and on the other hand, the generality and openness of some current systems

enables the composer to influence the process at any state, and may therefore help to

resolve the conflict between initial intentions and eventual output.

2English translation: “The algorithms embody a general idea of a piece, while the musical data
only maintain abstract relations and support the realization of the score, which concretizes these
relations.”
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3. Model and Music
Two Musical Examples

3.1. Introduction

In this chapter, I will discuss one piece by Gottfried Michael Koenig called Übung für

Klavier, which he realized using his program Project 2 and a family of pieces, here

called ST pieces, by Iannis Xenakis. Although the initial intentions of Übung für Klavier

and those of the ST pieces, as well as the concrete resulting music, differ greatly, their

production shows several points of intersection. Both works are realized using programs,

which form a conscious generalization of previous work and can be seen as experimental

and speculative models. Their axiomatic approach constitutes a certain simplification

of musical processes; a reduction to the substantial essence of music.

3.2. Koenig’s Übung für Klavier

Gottfried Michael Koenig’s piece Übung für Klavier, composed in 1969, is the first piece

he realized with his program Project 2. Project 2 was not designed for the realization of a

single piece, but as a general composition program. As Koenig writes in the preface of the

score, it is therefore, “necessary to generalize individual composing habits; an attempt

must be made to formulate a theory – however limited – of composition.”[Koe69] Übung

für Klavier (Study for Piano) is thus a first test of this theory. The word Übung, meaning

‘study’, but also ‘practice’, does not primarily refer to the player or the instrument, but

rather to the composition of the piece; it is a study in writing a piece with the program

Project 2. The title thus identifies the work as a test object and reveals the critical

reflection of the work itself on the model and material from which it is derived.

The piece consists of 12 structures and 3 variants of each of these structures, of
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3. Model and Music

which the pianist chooses one variant for each structure to be played. Hence, there are

312 = 531441 possible combinations of variants, of which one is performed.

Project 2 is based on a number of basic notions: compositional rules, musical quanti-

ties (data), characteristics of musical sound (parameters), combinations of rules and data

(structure formula), and “combinatorial possibilities”[Koe70a] resulting from a structure

formula (variants). As Koenig states, “The purpose of PROJECT 2 (PR-2) is to ‘cal-

culate musical structure variants’.”[Koe70a] Since aleatoric decisions are employed in

different phases of the program, it is not necessary to enter additional data for the cre-

ation of variants from a structure formula. The rules and the set of data are fixed for a

specific structure and the computer constructs variants.

By following a questionnaire of over 60 questions, the composer describes a certain

model of which variations are created. In Übung für Klavier, the 12 structures are

structure formulas, variants are created by the use of aleatoric procedures. There are

eight parameters that describe a structure formula: instrument, harmony, register, entry

delay, duration, rest, dynamics, and mode of performance. Since the piece is only for

one instrument, the instrument parameter is ignored.

3.2.1. The List-Table-Ensemble Principle

The basic principle for the construction of musical data in Project 2 is a three-layered

process of entering, grouping, and selecting elements, the so-called List-Table-Ensemble

principle. The construction of data for almost all parameters follows this principle. In

the first instance, the composer enters a list of “allowed” elements; a basic reservoir of

the smallest components. In the second layer, the user forms groups of these elements in

a table, a list of selections from the list of “allowed” elements. Consequently, an ensemble

is formed by selecting groups from the table. Thus, there are three layers of selection,

i.e. choices of elements from a given supply. The first two selections are done by the

composer. The composer chooses the basic elements and determines their grouping in

the table. These selections and groupings remain the same for all variants of a structure.

The third selection, however, is done with the help of the selection programs alea, series,

and sequence (q.v. Selection Principles in this section), which chose the number and

indices of the table-groups to be inserted into the ensemble. The third level differs from

the first two levels of selection in that the selection can be changed for each variant and

not single elements, but whole groups of elements are selected.

The List-Table-Ensemble principle is an extension of the series as a basic building

block, which can be permutated in order to derive relationships. Aside from the input
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3.2. Koenig’s Übung für Klavier

of the initial reservoir of “allowed” values, the other levels operate on indices. The con-

crete values are substituted by pointers to concrete values. The operation on pointers

is an abstraction, which constitutes an intermediate meta-level, through which aspects

of the musical reality become controllable. In doing so, numbers operated on never

refer to themselves, i.e. calculations and the construction of numerical structures are

not done for their own sake, but always for the purpose of referring to concrete values.

Thus, numerical values always serve the description of musical situations. The transla-

tion of concrete values into indices creates a level on which processing is possible. The

List-Table-Ensemble principle clearly discriminates between the material and its order.

The initial input of “allowed” values is an unordered set of possible elements and the

operations on indices establish orders and groupings, thereby breaking the series up

into material and sequence. Composer Karlheinz Essl argues in his text “Zufall und

Notwendigkeit”, that this conception of numerical values as an intermediate composi-

tional level stems from Koenig’s experiences in the electronic studio:

Dort, wo die Ebene der musikalischen Notation überhaupt wegfällt, wird

die numerische Übersetzung kompositorischer Daten und Vorgänge zu einer

unabdingbaren Forderung bei der Realisierung elektronischer Musik. Die

Notwendigkeit der Abstraktion ergibt sich zudem aus den Gegebenheiten

des Studios [. . . ].1 [Ess89]

3.2.2. Selection Principles

For the selection of table-groups, for the formation of the score from ensemble data,

and a few other purposes, there are selection principles used. These principles typically

establish orders of the elements of a given supply. The selection programs are mainly of

an aleatoric nature. For Koenig, a described structure, such as the structure formula,

or a given set of elements, from which a selection is made, has a potential, which can be

manifested in many ways. The use of constrained randomness here, is quite different,

than for example in the work of Iannis Xenakis. Whereas Xenakis works with differ-

ent random distributions whose specific characteristics are crucial and often audible in

the result, i.e. random processes themselves are used for the creation of musical data,

Koenig uses randomness mostly for creating variation. Aleatoric decisions are used to

1English translation: “Where the level of musical notation in general ceases to apply, the translation of
compositional data and processes becomes an indispensable demand in the realization of electronic
music. Moreover, the necessity of abstraction arises from the conditions of the studio.”
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3. Model and Music

create variable decisions within fields of defined possibilities, not in order to introduce

a character of randomness (Zufallscharakter) into the musical output.

Wir wollen darunter [reduzierter Zufall] eine einmalige aleatorische Entschiedung

innerhalb eines Feldes möglicher Entscheidungen verstehen oder doch so

weniger Entscheidungen, daß der Zufallscharakter empirisch nicht in Er-

scheinung tritt; der Zufall lenkt zwar, wird aber nicht als solcher erkannt.2

(Koenig qtd. in [Boe67])

The selection principles used in Project 2 are show in table 3.1. Alea is the only

principle which has no memory, i.e. after an element has been selected all elements are

still equally likely to be selected next. Series creates a random permutation of the given

supply. The selection principles Ratio and Group are results of a discourse in serial

music. In order to construct higher-level compositional units (groups), and find ways

out of the pointillistic style, the basic rule of serial music, the avoidance of repetition, is

abolished. Instead, a controlled and serially organized form of repetition is introduced.

Karlheinz Essl describes Koenig’s approach towards repetition as a generalization of

Stockhausen’s theory of groups. [Ess89, page 45] In his text “Gruppenkomposition:

Klavierstück 1”, Karlheinz Stockhausen defines the term “group”:

Mit “Gruppe” ist eine bestimmte Anzahl Tönen gemeint, die durch ver-

wandte Proportionen zu einer übergeordneten Erlebnisqualität verbunden

sind, der Gruppe nämlich.3 [Sto63]

The principle tendency has a different nature than the previously described methods.

In contrast to the other principles, it does not only select from a supply, but creates

a shape in time, it thus introduces directionality. In contrast to the other principles,

whose outputs could also be reversed and may still be valid, the tendency principle

works in time. The connection with time is also the reason why Koenig employs the

tendency principle especially frequently for the selection of entry delays, in fact he uses

the principle in 8 of the 12 structures of Übung für Klavier. 4

2English translation: “We want to understand it [reduced randomness] as a unique aleatoric decision
within a field of possible decisions, or, however, decisions in which the character of randomness does
not appear empirically; randomness guides, although it is not recognized as such.”

3English translation: “‘Group’ means a certain number of tones, which form a higher-level quality of
experience, the group, through related proportions.”

4Koenig also mentioned the suitability of the tendency principle for the selection of entry delays in a
lecture given at the Technische Universität Berlin on the 24th of January, 2003.
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3.2. Koenig’s Übung für Klavier

alea (a,z) Uniform random choice between a and z.
series (a,z) Uniform random choice between a and z

without repetition. If an element was se-
lected, it can not be selected again until all
remaining elements have been selected.

ratio (p1,p2,. . . ,pn) The same as series, but the factor p deter-
mines how often an element can be selected
before it is blocked.

group (a,z,type) The elements are selected by either alea or
series and repeated in groups. The size of
the groups is also selected by either alea or
series and the limits are determined by a
and z.

tendency (d1,a11,a21,z11,z21,. . . ) Uniform random choice between changing
borders, starting between a1 and a2 ending
between z1 and z2. There can be any number
of “sub-tendencies”, di determines the rela-
tive length of “sub-tendency” i within the
whole mask.

sequence (i1,i2,. . . ,in) The order of the elements is directly defined
by the user.

Table 3.1.: Selection Principles
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The selection principles also represent a perspicuous formulation of a generalized idea

of composition processes, namely the idea of composition as selection. On different lev-

els the material is clearly defined, firstly a selection is made by the composer, secondly

generalized methods of selection are applied to a field of possibilities, consequently lead-

ing to the description of structures with certain potentials. The idea of selection and

variation, of providing fields of possibilities, which are articulated by specific selections,

pervades Übung für Klavier on many levels. On an outer level, the performer is in-

volved in creating the final form of the piece. The variations from which the composer

selects are themselves possible concretizations of a structure formulas, which in turn are

aggregates of material, in the first instance from a given supply of data determined by

the composer, and secondly selected and ordered with the help of the selection princi-

ples. G.M. Koenig’s Übung für Klavier, therefore, shows a unique clarity in dealing with

decision-making processes.

3.2.3. Harmony

Although Project 2 allows the composer to establish a parameter hierarchy and set a

“main parameter”, which resolves certain constraints stemming from interdependent

parameters, most parameters are dealt with in the same way, the List-Table-Ensemble

principle. There is, however, one important exception, the harmony parameter, which

determines the pitch organization. There are three different principles used: chord, row,

and interval. In the chord principle, the user enters a chord table which is then sorted

by using a selection principle. Thereafter, the chords are transposed, using either alea,

series, a given row, or no transposition. The row principle establishes a sequence of

rows derived from a given input row. These transpositions can be produced in four

ways: transposition with alea, with series, chromatically ascending, or by using the

same row as a row of transposition intervals. The third principle, interval, uses a chord

entered by the user and analyzes it according to its interval content. From this interval

content a matrix is build, which determines which intervals can follow each other and

which cannot. The special treatment of the pitch parameter indicates a supremacy of

this parameter over the others. The harmony stands out, in that it is the only one which

employs methods, which are specific to its domain.

24



3.2. Koenig’s Übung für Klavier

3.2.4. The 12 Structures of Übung für Klavier

In the preface of the score of Übung für Klavier, Gottfried Michael Koenig roughly

describes the “total plan” according to which the “elementary constellations” were ar-

ranged:

Sequences of tones start rapidly in a narrow range and gradually get slower,

at the same time covering a wider pitch range (structure 1). [. . . ] Rapid

tone sequences are left over; they get quicker and slower whilst the range

narrows, widens and narrows again (structure 3).[. . . ] A transition to the

last group of structures is formed by chords which start regularly and then

become irregular [. . . ] (structure 7); groups of chords then alternate with

groups of tones (structure 8). [. . . ] Groups of tones of equal length occur at

various speeds, linked by means of the pedal (structure 11), and finally there

are two-part configurations, rapid at first, then in a composed ritardando

(structure 12). [Koe69]

Although Koenig sees some structures as transitions, such as structures 3 and 7, his

description of the general course of the piece shows that Übung für Klavier is perma-

nently in transition. Despite its serial and combinatorial nature, the piece continually

exhibits directionality on many levels. Entry delays, pitch ranges, and dynamics move

throughout the structures, there are hardly any moments of standstill. This is in most

parts the effect of using tendency masks. The extensive use of this principle might stem

from the fact that it was one of the main novelties of Project 2 in comparison to its

precursory models.

Koenig defines three classes of basic material for Übung für Klavier : rapid tone se-

quences (“passages”), single tones (“tones”), and chords. Table 3.2 shows the durations

in seconds of the three variants, the basic material, the harmonic principle used, and the

selection principle used for the generation of the entry delays as well as their minimum

and maximum values in seconds for the 12 structures of the piece. Koenig establishes

many cross-references between the structures by reusing and transforming material. Fig-

ure 3.1 shows the pitch material used in the twelve structures and their relationships.

The used “basic material” and the relationships of the pitch material indicate that the

piece can be roughly divided into three parts. The first part (structures 1–3) consists

mainly of single tones and passages of varying density and movement in pitch range. The

interval principle is used in all of the three structures, using the same six-tone chord.

Structures 4 to 7 feature mainly chords, which are different transpositions of the chord
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table used in structure 4, which in turn is constructed by selecting several two-, three-

and four-note combinations of tones from the chord used in structure 1. The final part

of the piece (structures 7–12) returns to the original interval principle of the first part.

Considering that the piece clearly stands in a serial tradition, it is remarkable that it

remains quasi-monophonic throughout most structures.

At first the piano was treated as a one-part instrument (structures 1, 3, 9, 11)

and then at least as a one dimensional one: chords in succession (structures 5,

7). A concession to wider performance possibilities was made by combining

rapid and slow tone sequences (structures 2, 10), and the same was done with

tone sequences and chords (structures 4, 6, 8). Not until the last structure

(12) is the instrument treated polyphonically. [Koe69]

Despite of the piece’s continuous development, created by shapes and masks, the

established cross-references, transformations of material, and variant-oriented way of

composing show a non-linear aspect of the form. Rather than seeing form as a container

to be filled with events or as hierarchical top-down structure, form and material are

mutually dependent and created in one process. As in other pieces by Koenig, such as

Streichquartett 1959 or Terminus , the form is determined by degrees of relationship, in-

termediation of contrasts, and transitions. Koenig’s approach to form, therefore, concurs

with Adorno’s notion, that the form is only substantial if it emerges from the demands

of the material itself:

Der unreflektierte, in allem Gezeter über Formalismus nachhallende Form-

begriff setzt Form dem Gedichteten, Komponierten, Gemalten als davon ab-

hebbare Organisation entgegen. Dadurch erscheint sie dem Gedanken als

Auferlegtes, subjektiv Willkürliches, während sie substantiell ist einzig, wo

sie dem Geformten keine Gewalt antut, aus ihm aufsteigt. Das Geformte

aber, der Inhalt, sind keine der Form äußerlichen Gegenstände sondern die

mimetischen Impulse, welche es zu jener Bilderwelt zieht, die Form ist.5

[Ado73, page 213]

5English translation: “The unreflected idea of form [Formbegriff], which re-echoes in all the clamor
about formalism, opposes form as a removable organsition to the versed, the composed, the painted.
Thereby it [form] appears as imposed on the thought, as subjectively arbitrary, whereas it is only
substantial, where it does not violate the formed, but arises from it. The formed [das Geformte],
however, the content, are no objects external of the form, but mimetic impulses, which are drawn
to this imagery [Bilderwelt], which is form.”
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struc variant durs basic material harmony e.d. selection (range)
1 35/46/67 passages interval tendency (0.1–1.72)
21 18/25/39 (total) tones row series (1.11–3.32)
22 tones/passages row series (1.11–3.32)
23 tones/passages interval ratio (0.1–2.67)
3 15/24/34 passages interval tendency (0.1–0.72)
41 35/48/81 (total) chords chord ratio (0.3–2.14)
42 chords/passages row tendency (0.1–1.38)
43 chords chord ratio (0.46–3.32)
44 chords chord tendency (0.46–3.32)
5 19/30/34 chords chord tendency (0.24–2.67)
61 32/36/55 (total) chords chord group (0.46–1.38)
62 tones row alea (1.11–2.67)
7 22/28/42 chords chord tendency (0.46–1.38)
8chords 41/71/85 (total) chords chord alea (0.24–0.89)
8tones tones interval alea (0.46–1.72)
9 21/34/44 passages/tones interval tendency (0.1–1.72)
101 18/34/53 (total) passages/tones interval tendency (0.1–1.72)
102 passages/tones interval tendency (0.1–3.32)
11 32/51/49 passages interval series (0.1–0.46)
121 42/42/42 passages/tones interval alea (0.1–1.11)
122 28/27/36 passages/tones interval tendency (0.1–0.72)

Table 3.2.: The 12 structures
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Interval 1 5 6 9 10 12 
 Structures: 1, 2.3, 3, 8.2 9, 10, 11, 12

Row 1 9 12 10 6 5 
 Structure 2.1

17 Chords 
 Structure 4.1

Row 9 5 8 6 2 1 
 Structure 2.2

permutation

Row 12 8 11 9 5 4 
 Structure 6.2

 transposition +11

Row 1 5 6 9 10 12... 
 Structure 4.2

 flattened

17 Chords 2 
 Structure 4.3

 transposition +8

17 Chords 3 
 Structure 4.4 transposition +11

17 Chords 4 
 Structure 5

 transposition +9

17 Chords 5 
 Structure 6.1

 transposition +5

17 Chords 6 
 Structure 7

 transposition +4

17 Chords 7 
 Structure 8.1

 transposition +1

Figure 3.1.: Relationships of the pitch material
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3.3. Xenakis’s ST pieces

Xenakis’s idea of the “fundamental phases of a musical work”, described in section 2.2.2,

was developed during the composition of his piece Achorripsis (jets of sounds) (1957)

for chamber orchestra, a piece which is centered around the above mentioned question:

“What is the minimum of logical constraints necessary for the construction of a musical

process?” [Xen92, page 16] In 1962 Xenakis had the opportunity to work on an IBM

7090 computer and composed a family of pieces (ST pieces), which form a continuation

of his “fundamental phases of a musical work” in form of an algorithm implemented in

a computer program.

3.3.1. Music Ex Nihilo

One can see Xenakis’s ST pieces in the context of the question above as a fundamental

research on musical universals. Xenakis asks the question, “how to create, figuratively

speaking, a ‘black-box’ which has music at the other end, and not just music, but

interesting music?” [Var96, page 80] His idea is to create an automaton starting from

a zero-point, a point with a “minimum of logical constraints”, which can lead to a

reconstruction “of the basic ideas of composition.” ex nihilo. [Xen92, page 207]

[. . . ] we shall begin by imagining that we are suffering from a sudden am-

nesia. We shall thus be able to reascend to the fountain-head of the mental

operations used in composition and attempt to extricate the general princi-

ples that are valid for all sorts of music. [Xen92, page 155]

Xenakis is advocating the search for a generalization that leaves Western art music as

a special case.

Starting from certain premises we should be able to construct the most gen-

eral musical edifice in which the utterances of Bach, Beethoven, or Schönberg,

for example, would be unique realizations of a gigantic virtuality, rendered

possible by this axiomatic removal and reconstructions. [Xen92, page 207]

It remains, however, highly questionable whether such a generality can be achieved.

Xenakis denies the inherent and irremovable historic quality of musical material, al-

though his own work clearly exhibits a multitude of influences and references. Achor-

ripsis and the ST pieces constitute a form of simplification, a generalization of musical
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activity; one might say an “approximation of music”. The use of probability functions

as an aesthetic phenomenon, and not as an externalization of compositional decision-

making processes, may be seen as the construction of a generalized model, with its

material and constructions embedded in a historic frame just like any other work of

Xenakis, and therefore despite of it speculative, constructivist nature not ex nihilo.

3.3.2. The ST Algorithm

1 The work consists of a succession of sequences each ai seconds long.
2 Definition of the mean density of the sounds during ai.
3 Composition Q of the orchestra (from r classes of timbres) during the sequence

ai.
4 Definition of the moment of occurrence of the sound N within the sequence

ai.
5 Attribution of the above sound of an instrument belonging to orchestra Q.
6 Attribution of pitch as a function of the instrument.
7 Attribution of a glissando speed if class r is characterized as a glissando.
8 Attribution of a duration x to the sound emitted.
9 Attribution of dynamic forms to the sound emitted.
10 The same operations are begun again for each sound of the cluster N ai.
11 Recalculations of the same sort are made for the other sequences.

Table 3.3.: Summarized ST Algorithm (from [Xen92])

The structure of the algorithm used in the ST pieces, which is shown in table 3.3, is

essentially the same as can been seen in the flow chart for the creation of Achorripsis

(see [Xen92, page 135]). Xenakis saw the structure of the ST program as an automaton,

a “black-box”. The “black-box” approach seems surprising, in that it indicates, that

Xenakis did not try to “solve particular structural problems” [Koe93b], by externalizing

certain aspects in the composition process, but rather tried to find a general model

for the automated generation of entire pieces. The ST pieces are on the one hand a

generalization of his previous work in “free stochastic music”, i.e. its “rules” derived at

least partly by introspection, but on the other hand it is also a speculative model, which

searches for musical universals, for “the general principles”, by defining a minimum of

rules and then navigating that space of possibilities.

Freed from tedious calculations the composer is able to devote himself to the

general problems that the new musical form poses and to explore the nooks
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and crannies of this form. [. . . ] With the aid of the electronic computer the

composer becomes a sort of pilot: he [. . . ] supervises the controls of a cosmic

vessel sailing in the space of sound [. . . ].

A piece produced with this method is first divided into a number of sections, or se-

quences, which consist of events with certain attributes. Most decisions are made with

the help of differently constrained probability functions, primarily using Poisson’s law

of rare random events and Gaussian distribution. Chance, however, is not used as a

selection mechanism, but rather the phenomenon of randomness itself is translated into

sounding matter. Randomness, therefore, becomes an aesthetic principle and a philoso-

phy of composition. With respect to ST/10-1, 080262, Xenakis states, “by its passage

through the machine, this work made tangible a stochastic method of composition, that

of the minimum of constraints and rules.” [Xen92, page 134] The Poisson distribution,

which is used for the generation of densities, section durations, pitch, and the moment of

occurrence of a sound in a section, is generally used to model the number of occurrences

of in itself rare events over a fixed period of time.

It [the Poisson distribution] represents the number of occurrences, per unit

time, of an event that can occur at any instant of time. For example, the

number of alpha particles emitted by a radioactive substance in a single

second has a Poisson distribution. [Knu69, page 132]

Musical events are thus represented as “rare random events” in time. Already with

Achorripsis, Xenakis extended his application of probability functions to larger sections

of the work, thus creating the entire form by the use of probabilities.

This model of the ST pieces should not describe a single piece of music, but a class

of pieces; Xenakis has compared the model to the idea of a fugue as an abstract au-

tomaton, which can be used to create an infinite number of pieces. The structure of the

algorithm reveals the supremacy of both timbre and time over other parameters. The

most defining differences between the sections of the ST pieces are in their density and

timbral characteristics. The pitches, which are assigned to the events, are generated

using random walks with a Poisson distribution, and have been subject to change by

Xenakis during the translation process of the output data into musical notation.

The output of the program required manual transcription and indeed Xenakis inter-

preted the output in parts rather freely. In Atrées , Xenakis even combined generated

and differently composed material, as Matossian writes, “he used seventy-five per cent
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computer material, composing the remainder himself.” [Mat05, page 208] Although,

Xenakis’s model used in the ST pieces and Achorripsis is speculative and the pieces

are testing the validity of a generalized theory of composition, his way of dealing with

the output data indicate that on a practical level he did not see the pieces primarily as

“test objects”, as Koenig did with Übung für Klavier , but used the program in parts,

contradicting his statements, rather as a generator of musical material. Moreover, he

also reused the original data and output, such as in ST/4 for string quartet, which is

based on ST/10 . This shows that not only the program describes a class a pieces, but

even one output of the program can lend itself for the composition of several pieces.
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4. The Design of CompScheme

4.1. Overview

CompScheme is a program for algorithmic music composition and stochastic sound syn-

thesis written in Objective Caml (OCaml) [Ler] I have been developing since 2006,

CompScheme can be used in two ways, as a library for developing applications in OCaml,

or by accessing its functionality interactively through an interface language1. The pri-

mary value generating mechanism in the program are streams, which are a concept from

functional programming, allowing the user to concisely describe networks of dynamic

data. Streams themselves are rules for generating values. Since streams can be com-

bined and even used to generate new streams, the rules themselves become the object

of composition. “Composing with rules” is thus not only interpreted as the mere appli-

cation of a rule but the actual composition of rules, an idea that is very prominent in

functional programming, if one sees rules as functions.

The interface language of CompScheme is an implementation of the functional pro-

gramming language Scheme2 [ASS96]. Instead of having a graphical environment or a

fixed work flow, where the user can either visually or by filling out forms or question-

naires construct networks and derive musical data, CompScheme requires the user to

have a degree of programming proficiency. By using an elegant, popular, small, and

powerful general-purpose language such as Scheme, the user has all of its expressive-

ness and means of abstraction at his or her disposal. The user can develop full-range

programs, or make small experiments by plugging together built-in streams and output

functions.

Internally, CompScheme consists of several modules, which contain functions for spe-

cific fields of application. Data generated in CompScheme can be written out in several

1All the code examples in this text are written in the interface language.
2The implementation of the interface language is based on Schoca: http://home.arcor.de/chr_
bauer/schoca.html
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ways, such as in Wav audio files, Midi files, and binary OSC files for SuperCollider. It is

also possible to control the SuperCollider server in real-time, plot and draw data. Fur-

thermore, CompScheme has an event type system, which features built-in event types,

and the possibility to create custom event types by bundling named parameters, setting

default values, creating transformation and output functions.

CompScheme runs on Mac OS X and Linux. The top-level interpreter can run as a

command line program, in a Scheme-mode in an editor such as Emacs, or on Mac OS X

in a specially developed Cocoa-application, which follows the usual editor-and-listener

design.

In this chapter, I first discuss the general motivation for choosing a programming

language as an interface of a composition system. Secondly, I will discuss the concept of

streams, as well as some issues and design ideas of CompScheme, which relate to streams.

In chapter 5, I present CompScheme’s event model, which provides a framework for

building abstract structural musical units. The discussion of the event model is followed

by a concrete example, the modeling of the first structure of Gottfried Michael Koenig’s

piano piece Übung für Klavier. Subsequently, the expressiveness of multi-layered event

streams is exemplified by presenting CompScheme’s facilities for controlling the Super-

Collider server (SC Server) in real-time. Finally, chapter 6 deals with CompScheme’s

functions for stochastic synthesis. Starting from finding a generalization of G.M.Koenig’s

SSP and I.Xenakis’s dynamic stochastic synthesis, I have tried to develop a framework,

which facilities experimentation in this field. We will see how the event model can be

applied to a lower level, the digital sample itself.

4.1.1. Why text and parentheses?

As H. Abelson and J. Sussman state in their book Structure and Interpretation of Com-

puter Programs, “programs must be written for people to read, and only incidentally

for machines to execute.” Programming languages are primarily tools to express ideas.

The formal nature of programming languages stipulates abstraction and generalization.

Thus, through programming the structure of an idea may be revealed. Our means of

expression shape what we can express. As Ludwig Wittgenstein famously formulated,

“die Grenzen meiner Sprache bedeuten die Grenzen meiner Welt.”3[Wit18] Music com-

position programming languages, therefore, influence our ideas of music. It may, thus,

be argued, that the choice of a programming language also has musical consequences.

3English translation: “The limits of my language mean the limits of my world.”
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4.1. Overview

Figure 4.1.: The CompScheme Cocoa-application

In the discussion about the right programming approach for computer music, the ad-

vocates of visual programming may say, “a picture says more than a thousands words”,

and visual information can be grasped more intuitively. This may be true, especially

with respect to ambiguous information. Programs, however, need to be unambiguous,

and the strength of programming languages lies in their means of abstraction. With the

exception of smaller networks, which can be concisely expressed using visual program-

ming languages, and in which the otherwise so disarraying mélange of visualization and

algorithm is not yet so apparent, visual programming languages are generally inferior to

text-based languages with regard to means of abstraction. “Flowcharts are abstraction-

hating. They only contain decision boxes and action boxes.”[GP96]. Moreover, the logic

of evaluation is often harder to understand, searching in the code is more difficult, and

once a program reaches a sufficiently developed size it is almost impossible to maintain

an overview (Deutsch Limit).

Computer music systems, however, can be of different types. Some are systems where

the user has a sort of dialogue, and others are more general purpose languages, offering

the user a set of basic functions, data structures, and means of combination. Comp-

Scheme falls into the second category and instead of inventing a new language, I have
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Figure 4.2.: A PARTS program converting values in Celsius to Fahrenheit

( define ( c e l s i u s− t o− f ah r enhe i t c ) (+ (∗ (/ 9 5) c ) 32) )

Figure 4.3.: A Scheme program converting values in Celsius to Fahrenheit
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chosen to use a language, which is small, elegant, and powerful and moreover already

popular in computer music, Lisp.

4.2. Streams

A musical performance or playback is a continuous stream of sound. In any computer

representation this continuum, however, is broken up into a discrete sequence of values.

The common digital representation of sound in the form of a sampled waveform, common

practice musical notation, as well as an event-based higher-level musical abstraction must

follow this rule. CompScheme is built around the data type of streams, which are an

elegant and simple way of dealing with sequences of values, that is widely known, used

and “one of the most celebrated features of functional programming”[Pau96]. Whereas,

in most imperative and object-oriented systems these sequences are usually created by

some iteration that collects the values or a mechanism that involves a change of state,

streams, however, are persistent.

Stream processing lets us model systems that have state without ever using

assignment or mutable data. This has important implications, both theo-

retical and practical, because we can build models that avoid the drawbacks

inherent in introducing assignment.[ASS96]

This persistence also has advantages in musical applications. The main one, of course,

is that no values are lost and everything that has been produced, and therefore everything

that will be produced, can be referred to, which provides the user with the possibility

to look into the “future” of a process and make decisions depending on what is going to

happen.

Streams are flexible, they can be combined, can contain values of any kind, such as

other streams or functions, and are collections as well as generative mechanisms. In more

imperatively oriented systems, values are usually generated with an iterative process and

collected in lists. In order to combine several processes one has to generate values, collect

them, operate on the collection, collect again and so forth. Streams operate differently

in that they generate values on demand. If several streams are combined, they are piped

into each other, one stream generates as much as the next one demands. Hence, infinite

processes can easily be expressed. Streams, thus, allow the user to concisely describe

networks of dynamic data, by plugging simple parts together.
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The persistent nature of streams makes the description of interdependent and also

parallel processes easy. Many streams may refer to one and demand values without

destructively modifying it or having to copy values. Figure 4.4 demonstrates that a

stream always returns the same sequence of values.

> ( define my−stream1 ( st−random−value 1 100) )
> ( for−example my−stream1)

(87 97 2 72 64 30 22 91 97 76 27 34 64 72 70 91 72 38 58 98)
> ( for−example my−stream1)

(87 97 2 72 64 30 22 91 97 76 27 34 64 72 70 91 72 38 58 98)

Figure 4.4.: Persistent streams always return the same sequence of values

Stream returning functions in CompScheme have names starting with the prefix st-.

The function st-apply, for example, takes a function and any number of streams, and

returns a stream, whose elements are the results of successively applying the function to

the elements of the streams.

Figure 4.5 shows a small example of referring to future values. The defined function

converts a stream of absolute starting values, into a stream of pairs of starting values and

durations. The durations are the successive time differences between the starting points,

so that each event would last until the next one starts. Although this is a small problem,

this example demonstrates the expressiveness of the stream approach. In a stream-based

system we can simply solve the problem by subtracting the next starting time from the

current one, and consequently build a list based on the original value (starting point)

and the difference (duration). So, we map the function ‘-’ over the stream with one

value dropped, thus gaining the ‘next’ value and the stream itself. Evidently, this also

allows for a more refined control of durations in relationship to starting positions of

adjacent events, than this brief example shows.

( define ( ca l c−durat ions s ta r t i ng−po in t s )
( st−apply l i s t s t a r t ing−po in t s

( st−apply − ( st−drop 1 s ta r t ing−po in t s )
s ta r t ing−po in t s ) ) )

Figure 4.5.: Referring to the next value

4.2.1. Finite and Infinite Streams

Most stream constructing functions in CompScheme return infinite streams, and it is

important for the user to keep the distinction between finite and infinite streams in mind.
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Some operations on streams, such as plotting a stream, searching for the minimum or

maximum element, accessing the last element, or appending streams require the input

streams to be finite. Figure 4.6 shows the definition of an infinite stream and the

construction of a stream which contains the first three elements of that stream appended

onto the stream itself in its infinite form. The function st-first n stream limits the

stream to the first n values, it thus converts an infinite stream into a finite one.

> ( define my−stream1 ( st−sum 1 0) )
> ( for−example ( st−append ( s t− f i r s t 3 my−stream1) my−stream1) )
(0 1 2 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16)

Figure 4.6.: Appending a finite and an infinite stream

“Inherited Ending”

When building networks of streams, in which streams act as supplies for parameter

values of other streams, it is not necessary to limit the topmost stream explicitly, if

a stream in the network is already finite. In other words, if any stream in a network

of streams is finite, the whole network is finite and contains as many elements as the

shortest stream in the network does. The stream of random values constructed in figure

4.7 and displayed in figure 4.8 ends after 10000 elements because the parameter for the

lower boundary is a linear shape from 1 to 20, which ends after 10000 elements.

> ( s imple−plot ( st−random−value ( s t− l i n e 10000 1 20) 20) )

Figure 4.7.: Plotting the implicitly finite stream

4.2.2. Higher-Order Functions and Streams

“The most powerful techniques of functional programming are those that treat functions

as data.”[Pau96, page 171] Higher-order functions or functionals are functions, which

operate on other functions. In functional programming it is common to abstract by

defining functions, which take other functions as arguments. This can help revealing

the general structure of a method. In a stream based approach many transformations,

filterings, and techniques of creating variation can be expressed in terms of higher-order

functions.
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Figure 4.8.: Plotting the implicitly finite stream

Figure 4.9 shows the filtering of a stream of random values. The returned stream

only contains those elements of the original stream, which fulfill the predicate x mod 12

= 0. If the numbers were to be interpreted as midi note numbers, the returned stream

would only contain the pitch C in different registers. The function st-filter function

stream returns a stream, whose elements are those of stream for which function is true.

> ( for−example ( s t− f i l t e r ( lambda (x ) (= 0 (modulo x 12) ) ) ( st−rv 0 127) ) )
(48 120 72 96 72 120 60 48 60 72 72 108 24 24 12 24 36 72 36 0)

Figure 4.9.: Filtering a stream

Figure 4.10 demonstrates the function st-apply function stream1...streamn by

creating a triangular random distribution. The function st-apply constructs a stream,

whose elements are the results of successively applying the function to the streams given.

A triangular random distribution can be created by taking the average of two uniformly

distributed random values in the same range. In chapter 5, we will see how the function

st-apply can be used to transform and vary musical structures.

( st−apply ( lambda (x y ) (/ (+ x y ) 2) ) ( st−rv 0 .0 1 . 0 ) ( st−rv 0 .0 1 . 0 ) ) )

Figure 4.10.: Using st-apply to create a triangular random distribution
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Figure 4.11.: A histogram of the first 10000 elements of the stream from figure 4.10

4.2.3. Defining Streams

Besides using the built-in streams, the user may also define his or her own streams. One

way to do this is to define a function for a specific stream network. In this way, we can

define a function which returns a stream of triangularly distributed random numbers by

naming the stream described above, illustrated in figure 4.12.

( define ( s t− t r i rnd minium maximum)
( st−apply ( lambda (x y ) (/ (+ x y ) 2) )

( st−rv minimum maximum) ( st−rv minimum maximum) ) )

Figure 4.12.: A simple stream definition

If the desired stream can not be built by combining already available streams, the

function st-cons value continuation can be used. This function builds a stream,

which contains value as its first element and continuation will be a delayed expression

that constitutes the rest of the stream. Figure 4.13 shows the definition of a stream using

st-cons. The first value is start and the continuation will be built by recursively calling

st-product with the start value multiplied by factor, thus creating an exponentially

increasing sequence.

However, the definition shown in figure 4.13 has one limitation, being that the factor

is constant and can not be controlled using a stream. Figure 4.14 shows an improved
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( define ( st−product s t a r t f a c t o r )
( st−cons s t a r t ( st−product (∗ s t a r t f a c t o r ) f a c t o r ) ) )

Figure 4.13.: A stream definition using st-cons

version in which the factor can be dynamically controlled using a stream. In order to

conform to the “inherited ending” principle, one has to check first if the factor stream is

empty. For each iteration the ‘current’ value of the factor stream is accessed using the

function this and updated for the next call using the next function, which returns the

stream without the first (i.e. ‘current’) element. For values which are not streams, the

functions this and next act as identity functions.

( define ( st−product s t a r t f a c t o r )
( i f ( empty−stream? f a c t o r )

empty−stream
( st−cons s t a r t

( st−product (∗ s t a r t ( t h i s f a c t o r ) ) ( next f a c t o r ) ) ) ) )

Figure 4.14.: A stream definition using st-cons and a stream as argument
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(this stream) Returns the current value of a stream.
(next stream) Returns the continuation of the stream (a new

stream).
(empty-stream? stream) Returns true if the stream is empty, otherwise

false.
empty-stream The empty stream (a constant).
(st-cons this next) Returns a new stream, whose first value is ‘this’

and whose rest is the result of the delayed appli-
cation of ‘next’, which is typically another stream
returning function.

(st-of-list list) Returns a stream whose elements are those of ‘list’.
(st-to-list stream) Returns a list whose elements are those of ‘stream’.
(for-example stream) Returns the first 20 values of ‘stream’ in a list.
(st-first n stream) Returns a finite stream identical to ‘stream’, but

which ends after ‘n’ elements.
(st-append streams...) Returns a stream constructed by appending the el-

ements of all the given streams, which are typically
finite.

(st-drop n stream) Returns a stream identical to ‘stream’, but without
the first ‘n’ elements.

(st-filter function stream) Returns a stream, which contains those elements
of ‘stream’ for which ‘function’ returns true.

(st-apply function
stream1. . . streamn)

Returns a stream whose elements are the results
of successively applying ‘function’ to the streams.

Table 4.1.: Basic stream functions
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5.1. General

CompScheme’s event model provides a framework for building abstract structural units.

Musical events are most commonly represented by bundling values for the description

of parameters together. In this way, a musical event can be seen as a list of name-value

pairs. A name may, for example, be “freq” and its associated value 440. CompScheme’s

event model provides means of building name-value pairs, by defining event types. Event

types are name-value pairs which have a name and default values. CompScheme has a

number of general functions, with which values and names can be accessed and events

transformed. Events, however, do not need to be understood only as lower-level musical

events, such as notes, messages to a synthesis processes etc., but may as well be rep-

resentations of higher-level structural units, such as sections, passages, phrases, blocks,

or entire pieces. In that sense, CompScheme offers a simple, yet powerful event model,

enabling the free construction and aggregation of possibly interdependent parametric

control structures on multiple temporal and structural levels.

5.1.1. Simple Event Types

Figure 5.1 shows the definition of a simple event type called myevent1 with three pa-

rameters, start, dur, and freq, and default values associated.

(defevent myevent1
( s t a r t 0 . 0 )
( dur 1 . 0 )
( f r e q 440 .0 ) )

Figure 5.1.: Defining a simple event type

Figure 5.2 demonstrates how a stream of events can be created using the function
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event-stream. In this example, the starting values are a series of integers starting with

0.0 and increasing by 1. The frequency parameter is controlled by an exponentially

distributed sequence of random numbers. The duration parameter is not controlled and

will thus be the default value from the event type definition, i.e. 1.0. It is also possible

for the user to provide more parameters than given in the event type definition, the

event will then extend automatically and hold the additionally given values too.

( define eventstream1
( event−stream ’ myevent1

( s t a r t ( st−sum 1 0 . 0 ) )
( f r e q ( st−exprand 100 .0 1000 .0 ) ) ) )

Figure 5.2.: Constructing an event stream

In general, it is the user’s responsibility to define in which way an event is to be

interpreted. The function shown in figure 5.3 can be used to output an event of the

defined type in a Csound score file syntax with the fixed instrument number 1.

( define ( print−myevent1 ev )
(write ”1 ” )
(map ( lambda (x ) (write x ) (write ” ” ) )

( l i s t
( event−get ’ s t a r t ev )
( event−get ’ dur ev )
( event−get ’ f r e q ev ) ) )

( newl ine ) )

Figure 5.3.: Defining a printing function

5.1.2. Higher-Level Events

CompScheme also has a number of built-in event types, such as different midi and

SuperCollider events. The functions, which output midi or SuperCollider events, require

streams which contains events that contain at least all of the parameters, which the

respective built-in types have. They may, however, contain additional name-value pairs.

An event in CompScheme is not only to be created in the last instance, as a bundling of

values before the data is written out, but may also be a representation of a higher-level

structural element, which requires further interpretation. Thus, a hierarchy of events

may be created and top-level or intermediate-level events and their interpretation can

be created and changed independently.
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The event type defined in figure 5.4 stands for a higher-level construct, a section. In

this simple example, a section has five properties: a time offset (offset), a duration

(dur), a minimum frequency (freqmin), a maximum frequency (freqmax), and starting

frequency (freqstart).

(defevent mysection1
( o f f s e t 0 . 0 )
( dur 10 . 0 )
( f r e q s t a r t 100 . 0 )
( freqmin 100 .0 )
( freqmax 10000 .0 ) )

Figure 5.4.: Defining a simple higher-level event type

However, an event is only given meaning through interpretation. Figure 5.5 shows the

definition of a function, which constructs a stream of events of the above defined type

myevent1 with the parameters from a given event of type mysection1. The function

st-until ends the “section” when the start value of the lower-level event stream is

greater than the duration specified in the higher-level event.

( define ( interpret−mysect ion1 s e c t i o n )
( l et ( ( o f f s e t ( event−get ’ o f f s e t s e c t i o n ) ) )

( s t−unt i l ( lambda ( event )
(> (− ( event−get ’ s t a r t event ) o f f s e t )

( event−get ’ dur s e c t i o n ) ) )
( event−stream ’ myevent1

( s t a r t ( st−sum 0 .1 o f f s e t ) )
( f r e q ( st−walk

( event−get ’ f r e q s t a r t s e c t i o n )
( st−rv −200.0 200 . 0 )
( event−get ’ freqmin s e c t i o n )
( event−get ’ freqmax s e c t i o n ) ) ) ) ) ) )

Figure 5.5.: Interpreting the defined event

Figure 5.6 shows the creation of twenty sections by creating the higher-level event

stream and mapping the interpretation function, defined in figure 5.5, over it. Figure

5.7 shows the frequencies of the twenty created sections.

This simple example demonstrates the elegance and ease with which a number of sec-

tions can be produced from a higher-level description. The possibility to define abstract,

higher-level structural units enables the composer to establish long-term relationships

among sections, phrases, units, or blocks. It also facilitates the algorithmic organization

of form concerning decisions.

49



5. The Event Model

( st−apply
interpret−mysect ion1
( s t− f i r s t 20

( event−stream ’ mysection1
( o f f s e t ( st−sum 10 .0 0 . 0 ) )
( f r e s t a r t ( st−rv 1000 .0 5000 .0 ) )
( freqmin ( st−rv 100 .0 8000 .0 ) )
( freqmax ( st−rv 100 .0 8000 .0 ) ) ) ) )

Figure 5.6.: Controlling the higher-level event stream

Figure 5.7.: The event’s frequencies over their starting points
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(defevent name
(< par1 > < value1 >)
(< par2 > < value2 >)
. . . )

Defines an event type.

(make-event type
(< par1 > < value1 >)
(< par2 > < value2 >)
. . . )

Creates an event of type ‘type’.

(event-stream type
(< par1 > < value1 >)
(< par2 > < value2 >)
. . . )

Returns a stream of events of type ‘type’.

(event-get parameter event)
Returns the event’s value associated with ‘pa-
rameter’.

(event-name event) Returns the event’s type name as a symbol.

(event-stream-apply
parameter function stream)

Returns an event stream equal to ‘stream’, but
with the values of ‘parameter’ replaced by the
values returned by mapping ‘function’ over its
values.

Table 5.1.: Basic event functions

5.2. Modeling Structure 1 of Koenig’s Übung für Klavier

In section 3.2, I have discussed G.M. Koenig’s piece Übung für Klavier, which was

realized using his composition program Project 2. In this section, I will show how the first

structure of this piece can be modeled in CompScheme. Due to the partly incomplete

description of the structure it is not possible to regenerate the exact structure, it is,

however, possible to come very close to the original, using the available documentation.

As described in section 3.2.1, the basic principle for the construction of musical data

in Project 2 is a three-layered process of entering, grouping, and selecting elements, the

so-called List-Table-Ensemble principle. In CompScheme, I will not directly model this

work flow, I will rather divide the construction into three different steps: the definition of

user supplied data specific to structure 1 of Übung für Klavier, the definition of functions,

which model the workings of Project 2, especially with regard to entry delay production,

and thirdly plugging together the necessary stream functions and the user supplied data

to define a function, which returns the structure.

The most characteristic aspect about the first structure of Übung für Klavier is the use

of masks for the entry delays and dynamic values. Starting very dense, the entry delays
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gradually get larger towards the end of the structure. As an example, I will show how

the entry delays are dealt with in the CompScheme model of this structure, the other

a parameters are handled similarly. Figure 5.8 shows first the definition of the entry

delay list and secondly the definition of two functions, which return the indices of the

lower and upper boundaries of the entry delay selecting tendency mask. The parameter

x is a position within the structure in percent of the total duration. The function

linear-shape x list linearly interpolates the list, which defines line segments in the

following format: n1 start1 end1 . . .nn startn endn and returns the interpolated value

at position x of the specified linear shape.

; ; l i s t o f b a s i c entry de lay va l u e s
( define ∗ entry−delays ∗

’ ( 0 . 1 0 .12 0 .15 0 .19 0 .24 0 .30 0 .37 0 .46 0 .58 0 .72 0 .89 1 .11 1 .38 1 . 72 ) )

; ; f unc t ions , which re turn the i n d i c e s o f the
; ; lower and upper boundar ies o f
; ; the entry de lay s e l e c t i n g tendency mask .
; ; the parameter ‘ x ’ i s in percent o f the whole s t r u c t u r e .
( define ( entry− lower x )

(round ( l inear−shape x ’ (20 0 0 27 0 1 20 0 6 33 6 8) ) ) )

( define ( entry−upper x )
(round ( l inear−shape x ’ (20 0 6 27 4 6 20 7 10 33 10 13) ) ) )

Figure 5.8.: The user defined masks and basic values for the entry delays

Figure 5.9 shows the definition of the event generating function. As seen above in

figure 5.8 the tendency masks are relative, i.e. they do not have a fixed number of

elements, but maintain their shape for different specified durations of the structure.

The goal is thus to define a function, which takes the durations, i.e. the sum of all entry

delays, as an argument, and returns the entry delays, while maintaining the shape of

specified tendency masks. In order to do that, the entry delay selecting function needs

to know its own output (the “current” time). In CompScheme, this can be done by

using st-iterates fun arg, which returns a streams with the following elements: arg,

(fun arg), (fun (fun arg)), . . . .

The duration and the velocity parameter are constructed similarly, but since their

values depend on the position in time, i.e. on the entry delays, they do not need

st-iterates. The generalized selection function for masks in percent is shown in figure

5.10.

Figure 5.11 shows the definition of the final structure generating function. As stated
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( define ( entry−delays durat ion )
( s t−unt i l ( lambda ( time ) (> time durat ion ) )

( s t− i t e r a t e s ( lambda ( time )
( l et ( ( percent (∗ 100 (/ time durat ion ) ) ) )

(+ time
(nth ∗ entry−delays ∗

( a l e a ( entry− lower percent ) ( entry−upper percent )
) ) ) ) )

0 . 0 ) ) )

Figure 5.9.: The entry delay generating function

( define ( se lect ing−mask mate r i a l shape−upper shape− lower start− t imes
durat ion )

( st−apply
( lambda ( idx ) (nth mate r i a l idx ) )
( st−rv

( st−apply ( lambda ( time ) ( shape− lower (∗ 100 (/ time durat ion ) ) ) )
s tart− t imes )

( st−apply ( lambda ( time ) ( shape−upper (∗ 100 (/ time durat ion ) ) ) )
s tart− t imes ) ) ) )

Figure 5.10.: Generalized selection with masks in percent

above, one of the powerful consequences of using relative tendency masks is that the

final structure can be stretched and compressed in time. Since the function accepts

a duration parameter we can produce structures of any length while maintaining the

same development, the same musical gesture. Many other parameters, such as duration,

velocity, and register depend on the entry delays, this is why we first define a local

variable start, which contains the entry delays. As a consequence of the above described

persistence of streams, no copying of values is necessary and all streams refer to the same

sequence of entry delays, despite the indeterminacy in the process of generation.1

5.3. Real-Time Control of the SuperCollider Server

The sound synthesis and music composition programming language SuperCollider un-

derwent a major change in its internal design from version 2 to 3. The so-called SC

Server, a powerful synthesis engine, and the SuperCollider language have been sepa-

rated into two separate programs and now communicate with the Open Sound Control

(OSC) protocol. SuperCollider ’s system designer James McCartney writes:

1Audio examples of different realizations as well as the entire source code can be found on the accom-
panying CD.
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( define ( s t ru c tu r e1 durat ion )
( l et ( ( s t a r t ( entry−delays durat ion ) ) )

( st−midi−note
( s t a r t s t a r t )
( durat ion ( se lect ing−mask ∗ durat ions ∗

durations−upper durat ions− lower s t a r t durat ion ) )
( v e l o c i t y ( se lect ing−mask ∗dynamics∗

dynamics−upper dynamics−lower s t a r t durat ion ) )
( note ( st−apply ( lambda ( pc mini maxi ) ( pc−alea pc mini maxi ) )

( st− interva l−matr ix ( interva l−matr ix ’ (0 4 5 8 9 11) )
( a l e a 0 11) ( a l e a 1 11) )

( st−apply ( lambda ( time )
(nth ∗ r e g i s t e r s− l owe r ∗

( r e g i s t e r s− l owe r (∗ 100 (/ time durat ion ) ) ) ) )
s t a r t )

( st−apply ( lambda ( time )
(nth ∗ r eg i s t e r s−upper ∗

( r eg i s t e r s−upper (∗ 100 (/ time durat ion ) ) ) ) )
s t a r t ) ) ) ) ) )

Figure 5.11.: The structure generating function

One goal of separating the synthesis engine and the language in SC Server is

to make it possible to explore implementing in other languages the concepts

expressed in the SuperCollider language and class library. Some other lan-

guages that I think may have interesting potential in the future for computer

music are OCaml, Dylan, GOO, and also possibly Ruby[. . . ].[McC02]

CompScheme’s control possibilities for the SC Server are not designed to be a re-

placement for the SuperCollider language. Synth definitions (SynthDefs), recording,

and routing, for example, must still be done in the SuperCollider language, but control

and instantiation of synths can be done through CompScheme. CompScheme’s event

model for controlling the SC Server is similar to the Pattern classes and the Pbind synth

control2 in the SuperCollider language, in that it allows synths to be scheduled with cer-

tain parameters. However, ut differs from the Pattern classes in several ways, allowing

arbitrarily deep nesting of control streams as the parameters of a synth can be updated

within one event, event streams may be directly written into an OSC binary file for non-

realtime rendering, and durations and entry delays are always controlled independently.

Moreover, the SuperCollider event type (SC event) is a regular CompScheme event type

and can be interpreted, transformed, and written out in numerous ways.

2See the SuperCollider help files for more information on these classes.
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As figure 5.12 shows, CompScheme’s SuperCollider synth creating event type has

three default parameters: the name of the SynthDef, a starting value, which is an entry

delay relative to the previous event’s starting time, and the duration. It is important,

that the synth will free itself, at latest after the time of the duration has passed, because

CompScheme manages the synth’s IDs, in order to be able to update the synth during

an event.

( st−sc−event
( synth ” s i n e1 ” )
( s t a r t 1 . 0 )
( dur 0 . 5 )
(<parameter4> <value4 >)
(<parameter5> <value5 >)
. . . )

Figure 5.12.: The sc event stream and its default values

5.3.1. Simple SC Events

Figure 5.13 shows a simple synth definition (synthdef), taken from [Ber07], which is to

be evaluated in the SuperCollider language. The parameters, which can be controlled

with CompScheme, are the arguments of the synthdef: freq, amp, dur, attack, decay.

(
SynthDef( ” s i n e1 ” ,{ arg f r e q = 440 , amp = 0 .2 , dur = 2 . 0 , at tack = 0 .25 ,

decay = 0.25 ;
var ssTime = dur ∗ (1 − attack − decay ) ;
var attackTime = dur ∗ attack ;
var decayTime = dur ∗ decay ;
Out . ar (0 ,

SinOsc . ar ( f req , 0 ,amp)
∗ EnvGen . kr (Env . l i n e n ( attackTime , ssTime , decayTime , 1 ) ,

doneAction : 2)
)

}) . s t o r e ;
)

Figure 5.13.: A simple synth definition (taken from [Ber07])

Figure 5.14 demonstrates how to play a SC event stream in real-time. This example

also demonstrates the advantage of persistent streams and the power of higher-order

functions. In contrast to midi event streams, SC event streams work with relative entry

delays, not absolute starting times. This decision has been made to ensure sensible time
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values for real-time output. In the example shown in figure 5.14 the starting times are

made by a random choice from a list of four values. The value 0.0 stands for simultaneous

events (chords). The events last until the next event starts, which is made by using the

entry delays of the start parameter and dropping the first value. There is, however, one

problem. Due to the chords, events which are followed by simultaneous events will have

a duration of 0.0 seconds. In order to ensure that all events last at least 0.1 seconds, a

clipping function is applied to the duration stream.

( sc−play
( l et ( ( entry−delays ( st−random−choice ’ ( 0 . 0 0 .1 0 .15 1 . 7 ) ) ) )

( st−sc−event
( synth ” s i n e1 ” )
( s t a r t entry−delays )
( dur ( st−apply ( lambda (x ) (max x 0 . 1 ) )

( st−drop 1 entry−delays ) ) )
( f r e q ( st−exprand 100 .0 4000 .0 ) ) ) ) )

Figure 5.14.: Playing a SC event stream

5.3.2. Sub-Events

As stated above, one of the powers of CompScheme’s SC event type system is that events,

which instantiate synths, can update the synth during an event. This means that events

can not only represent note-like sound events, but also control updates, within such a

sound event. In general, this mechanism works by not supplying a static value or a

stream of numbers, but by supplying a stream of streams. Every stream in this stream

of streams is then seen as a development the parameter has during the respective event.

However, the streams inside must be of a certain type, namely sc nset. Figure 5.15

shows the definition of two auxiliary functions for the creation of a sub-event stream.

The first function returns a stream of st-sum streams. The second function returns

the stream of nset-streams we will use in the final output. The nset event type holds

two values, start, which is a starting value relative to the starting point and duration

of the parent event, where 0.0 denotes the starting point and 1.0 the ending of the

parent event, and value which is the respective value used for the update of the synth’s

parameter. The defined function stream-nsets takes three arguments, which will be

streams, the number of elements for each sub-event stream, the starting points and the

values themselves, which are assumed to be streams of streams.

Figure 5.16 finally shows how the an nset-stream can be embedded. In the example,
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; ; a stream of streams
( define ( sum−streams add s t a r t ) ( st−apply st−sum add s t a r t ) )

; ; a stream of nse t streams
( define ( stream−nsets st−n s t− s ta r t st−value )

( st−apply
( lambda ( ns t r s t r t v l s )

( s t− f i r s t n s t r ( st−sc−nset ( s t a r t s t r t ) ( va lue v l s ) ) ) )
st−n s t− s ta r t st−value ) )

Figure 5.15.: Defining auxiliary functions for sub-events

we create a simple SC event stream, but use the above defined function for the creating

a stream of nset-streams to control the frequency parameter. The duration of the

update streams will be randomly selected between 2 and 5, the starting points of the

updates are generated by streams of streams, which all start at 0.0 and increment by a

constant addition of a randomly generated value for each event between 0.05 and 0.2.

The frequency of each event will thus always start at 800 Hz. The defined function takes

the frequency increment per sub-event as an argument, here we call the function with a

constant of 100 Hz.

( define ( sc−nset−stream1 freqadd )
( st−sc−event

( s t a r t 2 . 0 )
( dur 2 . 0 )
( f r e q ( stream−nsets

( st−rv 2 5)
( sum−streams ( st−rv 0 .05 0 . 2 ) 0 . 0 )
( sum−streams freqadd 800 .0 ) ) ) ) ) )

( sc−play ( sc−nset−stream1 100 .0 ) )

Figure 5.16.: Defining and playing a stream with an embedded nset stream

5.3.3. Scheduling Event Streams

It is not only possible to extend the event model to lower levels, as described in the

previous section, but also to extend it to higher levels. SC event streams themselves

can also be scheduled. There is another type of event called sc stream event, which

contains SC event streams and starting times as relative entry delays. In the example

in figure 5.17 a stream of SC event streams is build by mapping the SC event stream

returning function sc-nset-stream1 defined in figure 5.16 over a stream of random
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values, which will be interpreted as frequency increments for the sub-event (see previous

section). The function st-sc-stream schedules the stream of SC event streams, the

entry delays are given by the start argument. The function st-sc-stream can also

take further st-sc-stream’s. Therefore, there is no built-in limit and scheduled event

streams can be scheduled again.

( sc−play−stream
( st−sc−stream

( s t a r t ( st−rv 0 .0 2 . 0 ) )
( sc−stream ( st−apply sc−nset−stream1 ( st−rv 10 100) ) ) ) )

Figure 5.17.: Playing a stream of event streams

(connect-to-sc port)
Opens a connection to the SuperCollider server
over the specified port (usually 57110).

(disconnect-from-sc)
Closes the connection to the SuperCollider
server.

(st-sc-event
(synth < value1 >)
(start < value2 >)
(dur < value3 >)
(< par4 > < value4 >)
(< par5 > < value5 >)
. . . )

Creates a SC synth event stream.

(st-sc-nset
(start < value1 >)
(value < value2 >)

Returns a stream of update values to be used in-
side of st-sc-event. The starting values should
range from 0.0 to 1.0, where 0.0 stands for the
beginning of the event and 1.0 for its end.

(sc-play sc event-stream) Plays an sc event-stream in real-time.

Table 5.2.: Basic event functions
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CompScheme

6.1. Introduction

The idea to synthesize sound directly by using musical procedures has been employed by

composers of electronic music at least since the early 1950s. Extending the compositional

control down to the micro-level, and thus being able to actually compose the sound itself,

has not only been part of the basic postulate of the Köln electronic music school, but

has also been a general thought in many approaches to computer generated sound until

today.

In the 1970s the composers Gottfried Michael Koenig, Iannis Xenakis, Herbert Brün,

and others developed systems that abandoned existing acoustic models, and tried to

derive sound synthesis methods directly from compositional activities. Rather than

trying to compose with sounds created on the basis of given analytical models, the

sound is supposed to be the result of the compositional process itself. In 1970 G.M.

Koenig described his program SSP, which was not yet implemented at that time:

As opposed to programmes based on stationary spectra or familiar types of

sounds, the composer will be able to construct the waveform from amplitude

and time-values. The sound will thus be the result of a compositional process,

as is otherwise the structure made up of sounds. [Koe70b]

With SSP, Koenig extended the principles used in his earlier programs Project 1 and

specifically Project 2 from the level of the note down to the level of the digital sample.

As basic elements amplitude and time values were specified and grouped in segments, in

which they were linearly interpolated. For the selection of the basic elements, aleatoric

and serial principles were used. SSP may be seen as an attempt to overcome traditional
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ways of representation that stem from instrumental music, and substitute them with

more general descriptions, such as similarity, transition, and variation that are to be

applied to the macro-structure of the form as well as to the micro-structure of the sound

in one process. This is derived from the axiomatic assumption, that “musical sounds

may be described as a function of amplitude over time.”[Koe70b]

Iannis Xenakis’s idea of dynamic stochastic synthesis differs from Koenig’s SSP in its

initial intentions. The notion of an evolutionary process is central to Xenakis’s idea of

dynamic stochastic synthesis. In dynamic stochastic synthesis, breakpoints are grouped

– here in cycles of a waveform – and linearly interpolated to form an integration of

macro- and micro-levels of musical time. Both approaches to stochastic sound synthesis

are primarily rooted in music composition, derived from compositional activities and

not in the analysis of sound.

Any theory or solution given on one level can be assigned to the solution

of problems of another level. Thus the solutions in macro-composition (pro-

grammed stochastic mechanisms) can engender simpler and more powerful

new perspectives in the shaping of micro-sounds. [Xen92]

Xenakis, Koenig, and Herbert Brün were motivated by finding ways of producing

sound that are idiomatic to the means of production, the computer. Instead of emulating

an instrumental or electronic paradigm, the idea of the sample as the basic musical

element is inherently digital. Xenakis, Koenig, and Brün used the sample as the basic

musical element in a search for ”sounds that had never before existed”[Xen92]. Instead

of the novelty of sound, the strength of this non-standard approach to sound synthesis

lies in its unification of the sound production and compositional processes. It is therefore

really one of representation.

In the following, I present a program that is not aimed at reimplementing, but rather

an attempt to generalize from Xenakis’s and Koenig’s systems for stochastic sound syn-

thesis and thus providing the possibilities for extensions. I try to show, that the flexibility

and expressiveness of streams lends itself well not only to the description of higher-level

compositional processes, but as well to the lower-level sound production. Stochastic

sound synthesis is an area of application in which a basic motivation of electronic mu-

sic, namely composing sound, demands a unified representation. This unification of the

sound production and the composition process requires a pervious relationship between

sound and control data. However, most current sound synthesis systems and computer

music languages establish a strict separation of synthesis and control data. There are,

therefore, hardly any platforms today, that enable experimentation in this area.
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6.2. Synthesis in CompScheme

In CompScheme, rather than considering sound synthesis and composition as two dif-

ferent domains, the same mechanisms are used to describe sound as well as higher-level

control. There is no separating wall between sound and control built into the system

and no limit to the level of abstraction.

6.2.1. A Generalization of Stochastic Synthesis

As described in section 6.1, both SSP as well as Xenakis’s systems group amplitude

and time points together, form sequences of these groups, and linearly interpolate the

breakpoints. In the case of SSP, these groups – called segments – contain elements

selected from initial amplitude and time lists by using Koenig’s selection principles.

In Xenakis’s systems, these groups are cycles of one waveform, whose elements are a

deviation from the previous cycle’s elements, using stochastic processes.

In CompScheme, the basic sound synthesis element is the sample, which contains both

a time and an amplitude value. A sample is considered an event, just like any other

musical event, and can be built and transformed with the same mechanism. Figure 6.2

shows the function st-sample which uses the event type syntax shown in figure 6.1.

(make−event <name>
(<parameter1> <value >)
(<parameter2> <value >)
e t c . . . )

Figure 6.1.: Event stream creation

The example in figure 6.2 creates a stream of sample events from two streams, one

determining the positions of the breakpoints and one that determines their amplitude.

The positions in this example are taken from a list of four integers and the amplitudes

are chosen randomly between -1.0 and 1.0.

( st−sample
( pos ( s t−o f− l i s t ’ (0 1 2 5) ) )
( va lue ( st−random−value −1.0 1 . 0 ) ) )

Figure 6.2.: Sample stream

Based on SSP, we may call the sample stream of figure 6.2 a segment. A sample’s time

value denotes its position within the segment to which it belongs. Segments are then
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collected in a stream – a stream of sample streams – which can be interpolated with an

interpolation function and written out into an audio file. A segment can thus be seen

as cycle in a process of dynamic stochastic synthesis, or as segment in a collection from

which we can select, using a selection principle.

6.2.2. Example 1: Dynamic Stochastic Synthesis

For a concrete example, we turn towards implementing a simple process close to Xe-

nakis’s GENDY. Generally speaking, in GENDY several breakpoints are defined and

interpolated in what could be called one cycle of a waveform. The next cycle is a devia-

tion of the previous one. Each breakpoint and time distance follows a random walk and

the total length of each cycle is also controlled.

Figure 6.3.: Two cycles

This process can easily be described in CompScheme using the function

segments-with-length, which takes three arguments: the length of the cycle and two

lists of numbers, the first one containing a value for each position and the latter one

for each amplitude value. The time values are then scaled to fit inside of the specified

length. It then returns a stream of samples; here to be considered one cycle.

Figure 6.4 shows the definition of a function called gendy1, that describes a GENDY-

like process, which is kept simple for the sake of brevity. The function

segments-with-length is successively applied to the elements of the three argument
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( define ( gendy1 )
( st−apply segments−with− length

( st−walk 80 .0 ( st−rv −10.0 10 . 0 ) 50 .0 250 . 0 )
( st−apply l i s t

( st−walk 15 .0 ( st−rv −2.0 2 . 0 ) 5 .0 20 . 0 )
( st−walk 15 .0 ( st−rv −2.0 2 . 0 ) 5 .0 20 . 0 )
( st−walk 15 .0 ( st−rv −2.0 2 . 0 ) 5 .0 20 . 0 )
( st−walk 15 .0 ( st−rv −2.0 2 . 0 ) 5 .0 20 . 0 ) )

( st−apply l i s t
( st−walk 0 .0 ( st−rv −0.1 0 . 1 ) −1.0 1 . 0 )
( st−walk 0 .0 ( st−rv −0.1 0 . 1 ) −1.0 1 . 0 )
( st−walk 0 .0 ( st−rv −0.1 0 . 1 ) −1.0 1 . 0 )
( st−walk 0 .0 ( st−rv −0.1 0 . 1 ) −1.0 1 . 0 ) ) ) )

Figure 6.4.: Definition of gendy1

streams. The first argument controls the lengths of the cycles, by means of a random

walk (st-walk) starting with 80, successively adding the elements of the inner stream of

random values between -10 and 10 onto its current value, and limited in borders ranging

from 50 to 250. The second and third arguments determine the breakpoints’s positions

within the cycle and are also controlled by random walks. For the sake of brevity, only

four breakpoints are made. Before segments-with-length is applied, the time points,

as well as the amplitude values, are collected in lists. It is to be mentioned, that the

returned stream of waveform cycles is infinite. Since the output is a stream, we have

not left the high-level description and can easily transform and reuse the created cycles.

Figure 6.5 shows how to write out the first 10000 cycles of a sample stream into an

audio file, using a sample rate of 44100 samples per second.

( write−sample−stream ”gendy1 . wav” 44100
( s t− f i r s t 10000 ( gendy1 ) ) )

Figure 6.5.: Writing out an interpolation into an audio file

One possible extension of GENDY that composer Sergio Luque proposed [Luq06] is the

concatenation of several independent GENDYs. Similar to SSP’s permutation function

in which segments are concatenated by using selection principles, Luque concatenates

waveform cycles from several independent GENDYs. We could easily concatenate several

gendy1s with the function st-interleave, which interleaves the output of any number

of streams and forms a new stream as shown in figure 6.6.

Usually stochastic synthesis is implemented in a form, that makes the positions of

breakpoints depending on the sample grid. That means, that a breakpoint can only be
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( s t− i n t e r l e av e ( gendy1 ) ( gendy1 ) ( gendy1 ) )

Figure 6.6.: Concatenating three independent cycle streams

set at a sample point. A consequence of restricting the positioning of the breakpoints

to sample points is that one can only express cycles of durations, which are an inte-

ger multiple of the duration of one sample in the chosen sample rate. This limitation

imposes a strong frequency grid, which is especially audible with high frequencies. A

restriction like this would be considered intolerable in the case of standard oscillators,

but it has been often neglected in the discussion of dynamic stochastic synthesis, in

favor of reimplementing truthful adaptations of its historic original, including all of its

idiosyncrasies. As can be seen in figure 6.4, the breakpoints’s locations are expressed in

floats. That means, they can be located in between samples, the resulting wave is then

‘sampled’ again during the interpolation process.

6.2.3. Example 2: A Variation on SSP

The following example demonstrates the use of higher-order functions to create vari-

ations of streams. In SSP, one defines segments and then selects an order of the de-

fined segments with a function called permutation. In CompScheme there is a func-

tion called segment that takes three arguments: the length of the segment, a stream

of relative time distances, and a stream of amplitude values and returns a stream of

samples. Figure 6.7 shows the creation of a stream of variations of segments. The de-

scribed function segment is mapped over three other streams, the first one producing

the lengths, the second one a stream of streams produced by varying a stream, and

the last argument is a stream of amplitude value streams. This last stream of streams

is again produced by a mapping of a function, namely st-repeat, which takes two

streams one containing the number of repetitions and the other containing the values

to be repeated. Thus the variable segments contains an infinite stream of segments.

Whereas in SSP every segment has to be created ‘by hand’, here we can easily employ

SSP’s principles on a higher level and create possibly infinite streams of segments.

In order to create a permutation, we can select segments from the above defined stream

by using another stream. Figure 6.8 shows a possible permutation. Three thousand

segments are selected from the above defined segments with a tendency mask going

from between 0 and 0 to 40 and 60 and an indexing function. Since the deviation among

the first elements is smaller then that among the later ones, the output develops from a
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( define segments
( st−apply segment

( st−random−value 5 50)
( st−apply st−random−value 1 15)
( st−apply st−repeat

( st−apply st−random−value 1 10)
( st−apply st−random−value −1.0 1 . 0 ) ) ) )

Figure 6.7.: segments

rather pitched sound to something more noisy.1

( st−nth segments ( st−tendency 3000 0 0 40 60) )

Figure 6.8.: a permutation

1Sound examples and source code can be found on the accompanying CD.
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Music
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7. Bellavista I, II, and III

Figure 7.1.: Piz Palü
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7.1. Overview

The three pieces, Piz Palü, Piz Zupò and Piz Bernina, which I discuss in this chapter,

all belong to a series. Piz Palü and Piz Zupò are pieces for fixed-medium and Piz

Bernina is a piece for solo piano. All three pieces have been realized using my program

CompScheme, which has been described in the previous part of this text.

7.2. Piz Palü and Piz Zupò

7.2.1. General

Both Piz Palü and Piz Zupò are produced using one and the same sound synthesis

method, which is based on Iannis Xenakis’s dynamic stochastic synthesis. Furthermore,

in both pieces spectra of musical sounds serve as basic material. But rather than using

them to recreate a recognizable effigy of the original or to establish a semantic relation to

their sources, they serve as points of departure, arrival and reference. During the course

of the pieces these spectral materials are juxtaposed and transformed. The spectra

thus serve as frequency an amplitude collections of specific characters. The pieces have

been realized using SuperCollider as a synthesis engine, using primarily one plugin unit

generator, which I developed, whose general workings are described in section 7.2.2. The

higher-level control has been realized with the help of my program CompScheme.

7.2.2. Synthesis

The sound synthesis method used in Piz Palü and Piz Zupò is based on Iannis Xenakis’s

dynamic stochastic synthesis. In this section, I explain the differences of my implemen-

tation to Xenakis’s model, for an introduction to dynamic stochastic synthesis the reader

may refer to [Hof00] or [Luq06]. Rather than trying to reimplement one of Xenakis’s

models, I have tried to find a generalization and extend the model, most significantly in

two points:

• the positioning of breakpoints independent of the sample grid

• the possibility to allow any signal to control the main parameters

Figure 7.2 shows two cycles of a stochastic synthesis process as it is commonly im-

plemented. In this example a cycle consists of four linearly interpolated breakpoints,
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Figure 7.2.: Stochastic Synthesis as commonly implemented

denoted by the letters A,B,C and D. Each of these breakpoints follows its own, inde-

pendent path. In the next cycle the vertical and horizontal positions are the result of

deviations of their previous states. The breakpoints in the next cycle are denoted by

the letters A’,B’,C’ and D’.

As can be seen in Figure 7.2, the first cycle has a length of exactly 9 samples and

the second cycle one of exactly 8 samples. In this model the breakpoints are always

located on a sample, i.e. they are positioned inside the sample grid, indicated here by

the vertical dotted lines. A consequence of restricting the positions of the breakpoints to

coincide with sample points, is that one can only express cycles having durations which

are integer multiples of the duration of one sample in the chosen sample rate. With a

sample rate of 44100, this would mean all frequencies that can be expressed are 44100/i,

where i is a positive integer greater or equal to 2.

Figure 7.3 illustrates my implementation of stochastic synthesis with respect to the

positioning of breakpoints in time. As can be seen, the breakpoints can be located in

between samples, the resulting wave is then ‘sampled’ again. It is thus possible to create

cycles whose lengths correspond to any value (within the usual constraints of digital

oscillators) and may change quasi-continuously in length.

My implementation of stochastic synthesis is a generalization of the usual implemen-

tation. Instead of trying to model the original truthfully, I have tried to leave as many
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Figure 7.3.: Positioning of breakpoints in between samples

Figure 7.4.: Highlighting the course of B’s amplitude development

72



7.2. Piz Palü and Piz Zupò

points as possible open to the user. The course, which the amplitude of each of the

breakpoints follow, can be controlled with any input signal. In figure 7.4, the course of

one of the breakpoints, B, is highlighted by the bold dotted line.

7.2.3. Piz Palü

Piz Palü is a 4-channel composition for fixed medium (tape). The piece consists of

streams of events which unfold in a dendritic structure. There are 4 distinct spectra

of musical sounds used as basic material. The nature of the spectra itself is here less

important than the fact and ways in which they differ from each. The spectra, which are

treated as frequency sets create reference points for the organization of the piece. It is

impossible for the listener to recognize the original source of a spectrum, it is, however,

possible to distinguish the sets from each other. The four spectra used in Piz Paü and

the ten spectra used in Piz Zupó are thus not random in nature, as they transport

characteristics of the original sources from which they stem without ever representing

them in a recognizable manner.

Synthesis in Piz Palü

In Piz Palü I have chosen not to use – as commonly done – random walks or second

order random walks to control the positioning of breakpoints. Instead, the positioning is

controlled by other ‘higher-order’ stochastic synthesis processes. Thus, there are three

levels in the sound producing process:

1. tendency masks, static values, linear and exponential shapes controlling the pa-

rameters of

2. multiple stochastic synthesis processes controlling the parameters of

3. one audible stochastic synthesis process

At the core of the concept of stochastic synthesis there is the idea of unifying the

macro-structure and the micro-structure in composition and to use procedures which

have been successfully employed on a higher level for the synthesis of sound. Piz Palü

can be seen as an attempt to reverse this application and use signals produced by a

stochastic synthesis algorithm – originally intended to be audio signals – as parametric

control signals. Stochastic synthesis processes thus occur on two levels in Piz Palü, as

control signals and as audio signals. Moreover, the spatial distribution of the sounds is
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again controlled by a stochastic synthesis process, which is then interpreted as a moving

position among the four speakers.

Structure and Event Streams

Piz Palü can be thought of as a number of streams of events, which carry certain

parameters, creating collections of sounds of different densities, spectral characteristics,

rhythmic coherence and dynamic movement. From event to event a stream can either

produce a directed variation of its previous event (state), branch out, that is create

a ’sibling’, die out or merge with another stream. Figure 7.5 shows the four stream

operations:

Figure 7.5.: continue, split, merge, or die

Before the actual structure of the event streams was created, a number of fixed points

were determined. These eight points, or constellations, are targets to be reached, found

by an empirical investigation and by a phase of exploring the possibilities of the model.

After the targets were determined, decision points were fixed in time. These are points

in which the above mentioned operations take place. The selections of the operations

are done by constrained probabilities changing over time. Piz Palü can be seen as a

number of multiply self-referential processes enfolded on different time levels, creating

variants of a single event which unfold in the course of the piece.

Figure 7.6 shows the arborescent event stream structure of the first 110 seconds of the

piece.

7.2.4. Piz Zupò

Piz Zupò is a 2-channel composition for fixed-medium. In contrast to Piz Palü, where the

structure of the piece is determined by streams of events, where a continuous evolution is

formed, the structure of Piz Zupò is built by dividing the piece into sections. There is a

common “structure formula” (G.M. Koenig) to all of the ten sections, i.e. a higher-level

description of what constitutes a section is.
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Figure 7.6.: Event streams structure of the first 110 seconds of Piz Palü

The composition of music, as well as most other structured thought processes, starts

by making fundamental distinctions, by discrimination. In Piz Zupò, I have made three

fundamental distinctions: directionality versus non-directionality, pitch versus noise, and

a hierarchy of distinct levels of description.

The basic element is an event, which, besides several synthesis parameters, has a

start time and a duration. Secondly, there are sections, which are directional and non-

directional streams of events. Thirdly there are directional and non-directional streams

of sections, constituting the highest level of description. Using the level of description as

a parameter was central to the production of Piz Zupò. Table 7.7 shows the ten sections

of Piz Zupò. The first column shows the number of the section, the second its duration

in seconds, and the third column shows if it is a directed or a non-directed section,

“directed” means that an event can only occur at a specific moment in the section,

allowing for a change of state where the determining parameters alter throughout the

course of the section. The fourth column shows the ‘type’ of the section, which means

the level of description. ‘A’ stands for streams of events, ‘B’ stands for streams of

sections, and ‘C’ stands for variations of single events. The fifth column shows the

rhythm generating method used. There are two methods which can be seen in figure

7.8 and 7.9. Rhythm type ‘T’ are rhythmic values generated by a transition table and

rhythm type ‘S’ are rhythmic values generated by exponential shapes. Type ‘T’ tends

to generate more combinatorial structures, whereas type ‘S’ has a more long term state

and generates gestures of speed alterations. The sixth column shows the basic frequency

sets used, which can be seen in figure 7.7. The seventh column indicates the presence of
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dynamically changing frequency values (“glissandi”).

The 8th column shows the average “freeze” value. In my implementation of stochastic

synthesis, the process can be frozen, enabling direct repetition of cycles and leading to

clearly pitched sounds. Thus, the values in the seventh indicate the average “pitched-

ness” of the sounds. However, for some sections, such as section 4 and 7 the deviations

are large, and even section 3 and 5 with high “freeze” values, contain single events with

low “freeze” values. Finally, the last column shows the number of simultaneous streams,

or “voices”, present in each of the sections.

The piece can be roughly divided into three parts, section 1, 2, and 3 form the first

part, which is characterized by distinct events of pitched quality, section 4, 5, and 6

form the middle part, which contains more complex higher-level gestures and introduces

non-directionality, and section 7, 8, 9, and 10 contain blocks of noisier textures.

The two channels are two renderings of the same event description, the difference only

occurs due to the indeterminacy of the synthesis process.

Nr dur dir type rhythm Freq. sets Gliss. aver. freeze N Str.
1 60 Y A T 5,6,7 N 0.999 → 0.15 3
2 115 Y A S 5,6,7 N 0.999 2
3 30 Y A T 5,6,7 N 0.9 → 0.97 3

4 60 N B S 1,2,3,5,6,7 Y 0.67 4
5 50 N B T 1,2,3 Y 0.995 3
6 120 Y C T 4,9,10 N 0.48 3

7 20 Y C - 6 Y 0.63 1
8 45 N C - 6 N 0.0 1
9 45 N C - 6 N 0.0 2
10 25 N C - 6 Y 0.0 3

Table 7.1.: The 10 sections of Piz Zupò

7.3. Piz Bernina

Piz Bernina is, on a general level, an application of the structure of Piz Palü onto a

different material. Despite the difference of the material, Piz Bernina is also composed

of “branching out” event streams, as was described in section 7.2.3.

The pitch material is composed of four different pitch sets. These pitch sets were

generated by a Prolog program, which performed a search according to a number of
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Figure 7.7.: The ten frequency sets used in Piz Zupò
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Figure 7.8.: Rhythmic values generated by a transition table (type T)

Figure 7.9.: Rhythmic values generated by exponential shapes (type S)

bars
1 4 7 10 13 17

R2 P1

R1 P2

R2 P2

R2 P2
R1 P1

Figure 7.10.: Event stream structure of the first 18 bars of Piz Bernina
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constraints. The goal was to find scales, which do not repeat in an octave, exclude a

number of pitch classes in a specified range, and only contain a specified set of intervals.

Table 7.2 shows the scales and the excluded pitch classes of the four pitch sets and figure

7.11 shows the four pitch sets in the ranges used, in musical notation. A goal of this

approach was to create sets of pitch material which are identifiably different from each

other. The exclusion of certain pitch classes, and the restriction to certain intervals

creates complimentary sets of different characters.

Nr Scale in intervals (semitones) Excluded pitch classes
1 3, 5, 1, 1, 4, 1, 3 1, 5, 7, 11
2 1, 3, 6, 1, 2, 3, 2 2, 3, 8, 9
3 5, 2, 4, 2, 5, 5, 2, 5 0, 4, 5, 6, 8, 10, 11
4 1, 7, 1, 3, 6, 2, 1 2, 7

Table 7.2.: The pitch sets of Piz Bernina

Figure 7.11.: The four pitch sets of Piz Bernina

The rhythmic organization of Piz Bernina shows some similarity to Clarence Barlow’s

probabilistic approach to distributing event attacks according to hierarchical divisions

of meters (see [Bar80]). In Piz Bernina, any rhythmic unit, starting from the bar as
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the longest unit, can be subdivided into either 2, 3, or 5 subunits, which in turn can be

subdivided again. A subdivision carries a list of weights, known as factors, and these

factors will be inherited by further generations. A division by two assigns the weight 1 to

the first unit and a weight of 0.5 to the second unit. A division by three assigns a weight

of 1 to the first, 0.4 to the second, and 0.7 to the third unit. A division by five assigns

a weight of 1 to the first, 0.3 to the second, 0.7 to the third, 0.4 to the fourth, and 0.5

to the fifth. A metric division of a bar is built by consecutively dividing the units. For

example, one bar may be divided by 2 and the resulting units will be divided by 3. This

division (notated 2x3) contains 6 units with the following weights: 1 (1x1), 0.4 (1x0.4),

0.7 (1x0.7), 0.5 (0.5x1), 0.2 (0.5x0.4), and 0.35 (0.5x0.7). Of course, more layers than

two can be used, as figure 7.12 shows. These weights operate as probabilities, which

reflect the hierarchical structure of the meter. In Piz Bernina there are three divisions

used: 2x2x2x2, 2x3x2x2, and 5x2x2.

As describe above, Piz Bernina is structurally similar to Piz Palü and in the course

of the piece event streams continue, split, merge, and die, forming an arborescent struc-

ture. The lowest-level event here is a note, the event streams, however, produce bars.

Furthermore, the state of an event stream contains several settings used for parametric

organization. Higher-level changes, thus, mostly occur at bar changes. The state which

is carried from event to event, is thus carried from bar to bar. These settings are as

follows, the employed pitch set, the current pitch range, the metric division, and finally

the density value.

Figure 7.12.: Attack weights for a division of 2x3x3
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Contents of the CD

The accompanying data CD contains the described program CompScheme, my composi-

tion discussed in the third part of this text, as well as this text itself in PDF and HTML

form. The reader may open a file called index.html on the root level of the CD in a

browser, which will guide him or her through the contents.

Directory Content
/compscheme/bin Contains the CompScheme Cocoa binary application for

MAC OS X 10.5 on Mac Intel
/compscheme/examples Contains all the CompScheme examples of this text and

additional examples
/compscheme/sources Contains the source code of CompScheme and compilation

instructions (see README file)
/music Contains Piz Palü, Piz Zupò, and Piz Bernina in WAV file

format, as well as the score of Piz Bernina
/thesis/pdf Contains this document as a PDF file
/thesis/html Contains this document in HTML file format

Table 7.3.: Contents of the CD
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Integration mit einem Computer komponierter Partituren (1983), pages 263–

271. PFAU-Verlag, 1993.

[LA85] Gareth Loy and Curtis Abbott. Programming languages for computer music

synthesis, performance and composition. Computing Surveys, 17(2), 1985.

[Ler] Xavier Leroy. The objective caml system: Documentation and user’s manual.

[Luq06] Sergio Luque. Stochastic synthesis: Origins and extensions. Master’s thesis,

Institute of Sonology, 2006.

[Man81] Peter Manning. Computers and music composition. Proceedings of the Royal

Musical Association, 107:119–131, 1981.

[Mat05] Nouritza Matossian. Xenakis. Moufflon Publications, 2005.

[McC02] James McCartney. Rethinking the computer music language: Supercollider.

Computer Music Journal, 26(4):61–68, 2002.

[Pau96] L.C. Paulson. ML for the Working Programmer. Cambridge University Press,

1996.

[Roa85] Curtis Roads. Composers and the Computer. William Kaufman Inc, 1985.

[Sto63] Karlheinz Stockhausen. Texte zur elektronischen und instrumentalen Musik,

volume 1 (1952-1962), chapter Gruppenkomposition: Klavierstück 1. Verlag

M.DuMont Schauberg, 1963.

[Vag01] Horacio Vaggione. Some ontological remarks about composition processes.

Computer Music Journal, 25(1):54–61, 2001.
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